These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11920748)
1. Accelerated fluid bed drying using NIR monitoring and phenomenological modeling: method assessment and formulation suitability. Wildfong PL; Samy AS; Corfa J; Peck GE; Morris KR J Pharm Sci; 2002 Mar; 91(3):631-9. PubMed ID: 11920748 [TBL] [Abstract][Full Text] [Related]
2. Accelerated fluid bed drying using NIR monitoring and phenomenological modeling. Morris KR; Stowell JG; Byrn SR; Placette AW; Davis TD; Peck GE Drug Dev Ind Pharm; 2000 Sep; 26(9):985-8. PubMed ID: 10914323 [TBL] [Abstract][Full Text] [Related]
3. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models. Fonteyne M; Gildemyn D; Peeters E; Mortier ST; Vercruysse J; Gernaey KV; Vervaet C; Remon JP; Nopens I; De Beer T Eur J Pharm Biopharm; 2014 Aug; 87(3):616-28. PubMed ID: 24613541 [TBL] [Abstract][Full Text] [Related]
4. Orthogonal Redundant Monitoring of a New Continuous Fluid-Bed Dryer for Pharmaceutical Processing by Means of Mass and Energy Balance Calculations and Spectroscopic Techniques. Pauli V; Elbaz F; Kleinebudde P; Krumme M J Pharm Sci; 2019 Jun; 108(6):2041-2055. PubMed ID: 30677419 [TBL] [Abstract][Full Text] [Related]
5. Spray drying ternary amorphous solid dispersions of ibuprofen - An investigation into critical formulation and processing parameters. Ziaee A; Albadarin AB; Padrela L; Faucher A; O'Reilly E; Walker G Eur J Pharm Biopharm; 2017 Nov; 120():43-51. PubMed ID: 28822874 [TBL] [Abstract][Full Text] [Related]
6. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach. Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893 [TBL] [Abstract][Full Text] [Related]
7. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. Findlay WP; Peck GR; Morris KR J Pharm Sci; 2005 Mar; 94(3):604-12. PubMed ID: 15666297 [TBL] [Abstract][Full Text] [Related]
8. Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy. Otsuka M; Kanai Y; Hattori Y J Pharm Sci; 2014 Sep; 103(9):2924-2936. PubMed ID: 24832393 [TBL] [Abstract][Full Text] [Related]
9. Near-infrared imaging for high-throughput screening of moisture induced changes in freeze-dried formulations. Trnka H; Palou A; Panouillot PE; Kauppinen A; Toiviainen M; Grohganz H; Alcalà M; Juuti M; Ketolainen J; Rantanen J J Pharm Sci; 2014 Sep; 103(9):2839-2846. PubMed ID: 24665039 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic modelling of the drying behaviour of single pharmaceutical granules. Mortier ST; De Beer T; Gernaey KV; Vercruysse J; Fonteyne M; Remon JP; Vervaet C; Nopens I Eur J Pharm Biopharm; 2012 Apr; 80(3):682-9. PubMed ID: 22230798 [TBL] [Abstract][Full Text] [Related]
11. Determining particle size and water content by near-infrared spectroscopy in the granulation of naproxen sodium. Bär D; Debus H; Brzenczek S; Fischer W; Imming P J Pharm Biomed Anal; 2018 Mar; 151():209-218. PubMed ID: 29353809 [TBL] [Abstract][Full Text] [Related]
12. Use of a continuous twin screw granulation and drying system during formulation development and process optimization. Vercruysse J; Peeters E; Fonteyne M; Cappuyns P; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C Eur J Pharm Biopharm; 2015 Jan; 89():239-47. PubMed ID: 25528462 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process. Van Bockstal PJ; Mortier ST; De Meyer L; Corver J; Vervaet C; Nopens I; De Beer T Eur J Pharm Biopharm; 2017 May; 114():11-21. PubMed ID: 28089785 [TBL] [Abstract][Full Text] [Related]
14. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy. Reddy JP; Jones JW; Wray PS; Dennis AB; Brown J; Timmins P Int J Pharm; 2018 Apr; 541(1-2):253-260. PubMed ID: 29481947 [TBL] [Abstract][Full Text] [Related]
15. Modeling of heat and mass transfer processes for the gap-lyophilization system using the mannitol-trehalose-NaCl formulation. Kuu WY; Doty MJ; Nisipeanu E; Rebbeck CL; Cho YK; Smit MH J Pharm Sci; 2014 Sep; 103(9):2784-2796. PubMed ID: 24648334 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic modelling of fluid bed granulation, Part I: Agglomeration in pilot scale process. Askarishahi M; Maus M; Schröder D; Slade D; Martinetz M; Jajcevic D Int J Pharm; 2020 Jan; 573():118837. PubMed ID: 31715361 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions. Gu B; Linehan B; Tseng YC Int J Pharm; 2015 Aug; 491(1-2):208-17. PubMed ID: 26070248 [TBL] [Abstract][Full Text] [Related]
18. Impact of drying on solid state modifications and drug distribution in ibuprofen-loaded calcium stearate pellets. Schrank S; Kann B; Saurugger E; Ehmann H; Werzer O; Windbergs M; Glasser BJ; Zimmer A; Khinast J; Roblegg E Mol Pharm; 2014 Feb; 11(2):599-609. PubMed ID: 24400735 [TBL] [Abstract][Full Text] [Related]
19. Microstructure of calcium stearate matrix pellets: a function of the drying process. Schrank S; Kann B; Windbergs M; Glasser BJ; Zimmer A; Khinast J; Roblegg E J Pharm Sci; 2013 Nov; 102(11):3987-97. PubMed ID: 23983150 [TBL] [Abstract][Full Text] [Related]
20. Analysing drying unit performance in a continuous pharmaceutical manufacturing line by means of mass--energy balances. Mortier ST; Gernaey KV; De Beer T; Nopens I Eur J Pharm Biopharm; 2014 Apr; 86(3):532-43. PubMed ID: 24380678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]