BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 11921096)

  • 1. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE; Stahl U
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.
    Wu CY; Roje S; Sandoval FJ; Bird AJ; Winge DR; Eide DJ
    J Biol Chem; 2009 Oct; 284(40):27544-56. PubMed ID: 19656949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae.
    Hansen J
    Appl Environ Microbiol; 1999 Sep; 65(9):3915-9. PubMed ID: 10473395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae.
    Gong A; Liu W; Lin Y; Huang L; Xie Z
    Microbiol Spectr; 2023 Jun; 11(3):e0132623. PubMed ID: 37098949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Double Salt, the Sulphite of the Protoxide of Platinum and the Sulphite of Soda, Discovered and Investigated by Messrs. A. Litton and Schnederman.
    West J Med Surg; 1843 Feb; 7(2):154-158. PubMed ID: 38207978
    [No Abstract]   [Full Text] [Related]  

  • 6. Cloning, nucleotide sequence, and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae.
    Korch C; Mountain HA; Byström AS
    Mol Gen Genet; 1991 Sep; 229(1):96-108. PubMed ID: 1654509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae.
    Schriek U; Schwenn JD
    Arch Microbiol; 1986 Jun; 145(1):32-8. PubMed ID: 3019265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MET2 affects production of hydrogen sulfide during wine fermentation.
    Huang C; Roncoroni M; Gardner RC
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential transcriptional regulation of sulfur assimilation gene homologues in the Saccharomyces carlsbergensis yeast species hybrid.
    Johannesen PF; Hansen J
    FEMS Yeast Res; 2002 Jan; 1(4):315-22. PubMed ID: 12702335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Larsen JT; Korch C
    Yeast; 1991 Nov; 7(8):781-803. PubMed ID: 1789001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.
    Thomas D; Surdin-Kerjan Y
    Microbiol Mol Biol Rev; 1997 Dec; 61(4):503-32. PubMed ID: 9409150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae.
    Cui D; Liu L; Sun L; Lin X; Lin L; Zhang C
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):72. PubMed ID: 37118827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylyl-Sulfate Kinase (Met14)-Dependent Cysteine and Methionine Biosynthesis Pathways Contribute Distinctively to Pathobiological Processes in Cryptococcus neoformans.
    Lee SH; Jang YB; Choi Y; Lee Y; Shin BN; Lee HS; Lee JS; Bahn YS
    Microbiol Spectr; 2023 Jun; 11(3):e0068523. PubMed ID: 37036370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Non-Conventional Yeasts for Low-Alcohol Beer Production.
    Simões J; Coelho E; Magalhães P; Brandão T; Rodrigues P; Teixeira JA; Domingues L
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retromer Complex and PI3K Complex II-Related Genes Mediate the Yeast (
    Jin X; Zhao H; Zhou M; Zhang J; An T; Fu W; Li D; Cao X; Liu B
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida albicans PPG1, a serine/threonine phosphatase, plays a vital role in central carbon metabolisms under filament-inducing conditions: A multi-omics approach.
    A L Bataineh MT; Soares NC; Semreen MH; Cacciatore S; Dash NR; Hamad M; Mousa MK; Salam JSA; Al Gharaibeh MF; Zerbini LF; Hamad M
    PLoS One; 2021; 16(12):e0259588. PubMed ID: 34874940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and Genetic Network Analysis of Genes Involved in Freezing and Thawing Resistance in
    Kim IS; Choi W; Son J; Lee JH; Lee H; Lee J; Shin SC; Kim HW
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33546197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation.
    Song Y; Gibney P; Cheng L; Liu S; Peck G
    Front Microbiol; 2020; 11():1264. PubMed ID: 32670223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.