These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 11921098)

  • 1. In vivo selectively infective phage as a tool to detect protein interactions: evaluation of a novel vector system with yeast Ste7p-Fus3p interacting proteins.
    Hertveldt K; Robben J; Volckaert G
    Yeast; 2002 Apr; 19(6):499-508. PubMed ID: 11921098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions.
    Krebber C; Spada S; Desplancq D; Krebber A; Ge L; Pluckthun A
    J Mol Biol; 1997 May; 268(3):607-18. PubMed ID: 9171284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The filamentous phages fd and IF1 use different mechanisms to infect Escherichia coli.
    Lorenz SH; Jakob RP; Weininger U; Balbach J; Dobbek H; Schmid FX
    J Mol Biol; 2011 Jan; 405(4):989-1003. PubMed ID: 21110981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins.
    Martin A; Schmid FX
    J Mol Biol; 2003 May; 328(4):863-75. PubMed ID: 12729760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size of the ligand complex between the N-terminal domain of the gene III coat protein and the non-infectious phage strongly influences the usefulness of in vitro selective infective phage technology.
    Cèbe R; Geiser M
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):841-9. PubMed ID: 11104694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP kinase dynamics in response to pheromones in budding yeast.
    van Drogen F; Stucke VM; Jorritsma G; Peter M
    Nat Cell Biol; 2001 Dec; 3(12):1051-9. PubMed ID: 11781566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA.
    Lubkowski J; Hennecke F; Plückthun A; Wlodawer A
    Structure; 1999 Jun; 7(6):711-22. PubMed ID: 10404600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd.
    Holliger P; Riechmann L
    Structure; 1997 Feb; 5(2):265-75. PubMed ID: 9032075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdomain interactions within the gene 3 protein of filamentous phage.
    Chatellier J; Hartley O; Griffiths AD; Fersht AR; Winter G; Riechmann L
    FEBS Lett; 1999 Dec; 463(3):371-4. PubMed ID: 10606756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of bacterial infection by filamentous phages involves molecular interactions between TolA and phage protein 3 domains.
    Karlsson F; Borrebaeck CA; Nilsson N; Malmborg-Hager AC
    J Bacteriol; 2003 Apr; 185(8):2628-34. PubMed ID: 12670988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectively infective phages (SIP).
    Spada S; Krebber C; Plückthun A
    Biol Chem; 1997 Jun; 378(6):445-56. PubMed ID: 9224923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phage infection process: a functional role for the distal linker region of bacteriophage protein 3.
    Nilsson N; Malmborg AC; Borrebaeck CA
    J Virol; 2000 May; 74(9):4229-35. PubMed ID: 10756036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The folding mechanism of a two-domain protein: folding kinetics and domain docking of the gene-3 protein of phage fd.
    Martin A; Schmid FX
    J Mol Biol; 2003 Jun; 329(3):599-610. PubMed ID: 12767837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Gal80p-interacting proteins by Saccharomyces cerevisiae whole genome phage display.
    Hertveldt K; Dechassa ML; Robben J; Volckaert G
    Gene; 2003 Mar; 307():141-9. PubMed ID: 12706896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprogramming the infection mechanism of a filamentous phage.
    Lorenz SH; Schmid FX
    Mol Microbiol; 2011 May; 80(3):827-34. PubMed ID: 21392130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolyl isomerization as a molecular timer in phage infection.
    Eckert B; Martin A; Balbach J; Schmid FX
    Nat Struct Mol Biol; 2005 Jul; 12(7):619-23. PubMed ID: 15937494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins.
    Beekwilder J; Rakonjac J; Jongsma M; Bosch D
    Gene; 1999 Mar; 228(1-2):23-31. PubMed ID: 10072755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phage-based system to select multiple protein-protein interactions simultaneously from combinatorial libraries.
    Rudert F; Woltering C; Frisch C; Rottenberger C; Ilag LL
    FEBS Lett; 1998 Nov; 440(1-2):135-40. PubMed ID: 9862442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stable phage-display system using a phagemid vector: phage display of hen egg-white lysozyme (HEL), Escherichia coli alkaline, phosphatase, and anti-HEL monoclonal antibody, HyHEL10.
    Maenaka K; Furuta M; Tsumoto K; Watanabe K; Ueda Y; Kumagai I
    Biochem Biophys Res Commun; 1996 Jan; 218(3):682-7. PubMed ID: 8579574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proline switch controls folding and domain interactions in the gene-3-protein of the filamentous phage fd.
    Martin A; Schmid FX
    J Mol Biol; 2003 Aug; 331(5):1131-40. PubMed ID: 12927547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.