These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11922066)
1. Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. King JK; Harmon SM; Fu TT; Gladden JB Chemosphere; 2002 Feb; 46(6):859-70. PubMed ID: 11922066 [TBL] [Abstract][Full Text] [Related]
2. Methylmercury formation in a wetland mesocosm amended with sulfate. Harmon SM; King JK; Gladden JB; Chandler GT; Newman LA Environ Sci Technol; 2004 Jan; 38(2):650-6. PubMed ID: 14750744 [TBL] [Abstract][Full Text] [Related]
3. Mercury dynamics of a temperate forested wetland. Galloway ME; Branfireun BA Sci Total Environ; 2004 Jun; 325(1-3):239-54. PubMed ID: 15144792 [TBL] [Abstract][Full Text] [Related]
4. Biogeochemical controls on mercury methylation in the Allequash Creek wetland. Creswell JE; Shafer MM; Babiarz CL; Tan SZ; Musinsky AL; Schott TH; Roden EE; Armstrong DE Environ Sci Pollut Res Int; 2017 Jun; 24(18):15325-15339. PubMed ID: 28502050 [TBL] [Abstract][Full Text] [Related]
5. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785 [TBL] [Abstract][Full Text] [Related]
6. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Mehrotra AS; Sedlak DL Environ Sci Technol; 2005 Apr; 39(8):2564-70. PubMed ID: 15884350 [TBL] [Abstract][Full Text] [Related]
7. Sulfate addition increases methylmercury production in an experimental wetland. Jeremiason JD; Engstrom DR; Swain EB; Nater EA; Johnson BM; Almendinger JE; Monson BA; Kolka RK Environ Sci Technol; 2006 Jun; 40(12):3800-6. PubMed ID: 16830545 [TBL] [Abstract][Full Text] [Related]
8. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area]. Chen R; Chen H; Wang DY; Xiang YP; Shen H Huan Jing Ke Xue; 2016 Oct; 37(10):3774-3780. PubMed ID: 29964408 [TBL] [Abstract][Full Text] [Related]
9. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388 [TBL] [Abstract][Full Text] [Related]
10. Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: implications for engineered wetlands. Mehrotra AS; Horne AJ; Sedlak DL Environ Sci Technol; 2003 Jul; 37(13):3018-23. PubMed ID: 12875409 [TBL] [Abstract][Full Text] [Related]
11. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980 [TBL] [Abstract][Full Text] [Related]
12. Mercury methylation in mesocosms with and without the aquatic macrophyte Eichhornia crassipes (mart.) Solms. Correia RR; Martins de Oliveira DC; Guimarães JR Ecotoxicol Environ Saf; 2013 Oct; 96():124-30. PubMed ID: 23829936 [TBL] [Abstract][Full Text] [Related]
13. Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source. Riscassi A; Miller C; Brooks S Environ Toxicol Chem; 2016 Jun; 35(6):1386-400. PubMed ID: 26574732 [TBL] [Abstract][Full Text] [Related]
14. Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation. Harmon SM; King JK; Gladden JB; Newman LA Arch Environ Contam Toxicol; 2007 Apr; 52(3):326-31. PubMed ID: 17384981 [TBL] [Abstract][Full Text] [Related]
15. Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production. Windham-Myers L; Marvin-DiPasquale M; A Stricker C; Agee JL; H Kieu L; Kakouros E Sci Total Environ; 2014 Jun; 484():300-7. PubMed ID: 23809881 [TBL] [Abstract][Full Text] [Related]
16. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem. Becker JC; Groeger AW; Nowlin WH; Chumchal MM; Hahn D Environ Toxicol Chem; 2011 Oct; 30(10):2300-11. PubMed ID: 21769922 [TBL] [Abstract][Full Text] [Related]
17. Mercury mine drainage and processes that control its environmental impact. Rytuba JJ Sci Total Environ; 2000 Oct; 260(1-3):57-71. PubMed ID: 11032116 [TBL] [Abstract][Full Text] [Related]
18. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Achá D; Hintelmann H; Yee J Chemosphere; 2011 Feb; 82(6):911-6. PubMed ID: 21074243 [TBL] [Abstract][Full Text] [Related]
19. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic Modeling of the Solubility and Chemical Speciation of Mercury and Methylmercury Driven by Organic Thiols and Micromolar Sulfide Concentrations in Boreal Wetland Soils. Liem-Nguyen V; Skyllberg U; Björn E Environ Sci Technol; 2017 Apr; 51(7):3678-3686. PubMed ID: 28248107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]