These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11922463)

  • 1. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate--polylactide composites.
    Bleach NC; Nazhat SN; Tanner KE; Kellomäki M; Törmälä P
    Biomaterials; 2002 Apr; 23(7):1579-85. PubMed ID: 11922463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films.
    Jayaramudu J; Das K; Sonakshi M; Siva Mohan Reddy G; Aderibigbe B; Sadiku R; Sinha Ray S
    Int J Biol Macromol; 2014 Mar; 64():428-34. PubMed ID: 24380815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
    Juhasz JA; Best SM; Brooks R; Kawashita M; Miyata N; Kokubo T; Nakamura T; Bonfield W
    Biomaterials; 2004 Mar; 25(6):949-55. PubMed ID: 14615158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of filler type on the mechanical properties of self-reinforced polylactide-calcium phosphate composites.
    Bleach NC; Tanner KE; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2001; 12(10-12):911-5. PubMed ID: 15348339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Filler Geometry on Polylactic Acid-Based Sustainable Polymer Composites.
    Leluk K; Frąckowiak S; Ludwiczak J; Rydzkowski T; Thakur VK
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for improving dispersion within polymer-glass composites using polymer precipitation.
    Oosterbeek RN; Zhang XC; Best SM; Cameron RE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104767. PubMed ID: 34455140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation.
    Niemelä T; Niiranen H; Kellomäki M
    Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Ambrosio L
    Acta Biomater; 2008 Nov; 4(6):1778-87. PubMed ID: 18571487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biphasic calcium phosphates/polycaprolactone composites by melt infiltration process.
    Lee BT; Van Quang D; Youn MH; Song HY
    J Mater Sci Mater Med; 2008 May; 19(5):2223-9. PubMed ID: 18049877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites.
    Shen L; Yang H; Ying J; Qiao F; Peng M
    J Mater Sci Mater Med; 2009 Nov; 20(11):2259-65. PubMed ID: 19488680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polylactic Acid/Nanostructured Si-Substituted
    Yoo KH; Cho HS; Kim DH; Lee JK; Yong-Il K; Hwang KH; Yoon SY
    J Nanosci Nanotechnol; 2018 Feb; 18(2):856-860. PubMed ID: 29448506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis.
    Rich J; Tuominen J; Kylmä J; Seppälä J; Nazhat SN; Tanner KE
    J Biomed Mater Res; 2002; 63(3):346-53. PubMed ID: 12115768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer.
    Li Y; Shimizu H
    Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.
    Niemelä T; Niiranen H; Kellomäki M; Törmälä P
    Acta Biomater; 2005 Mar; 1(2):235-42. PubMed ID: 16701800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites.
    Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN
    Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications.
    Ferrández-Montero A; Lieblich M; González-Carrasco JL; Benavente R; Lorenzo V; Detsch R; Boccaccini AR; Ferrari B
    Acta Biomater; 2019 Oct; 98():114-124. PubMed ID: 31085363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of filler content and size on transport properties of water vapor in PLA/calcium sulfate composites.
    Gorrasi G; Vittoria V; Murariu M; Ferreira Ada S; Alexandre M; Dubois P
    Biomacromolecules; 2008 Mar; 9(3):984-90. PubMed ID: 18275148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of polylactide/rice husk hydrochar composite.
    Nizamuddin S; Jadhav A; Qureshi SS; Baloch HA; Siddiqui MTH; Mubarak NM; Griffin G; Madapusi S; Tanksale A; Ahamed MI
    Sci Rep; 2019 Apr; 9(1):5445. PubMed ID: 30931991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.