These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11922465)

  • 1. Residual stress effects on fracture energies of cement-bone and cement-implant interfaces.
    Zor M; Küçük M; Aksoy S
    Biomaterials; 2002 Apr; 23(7):1595-601. PubMed ID: 11922465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shrinkage stresses in bone cement.
    Orr JF; Dunne NJ; Quinn JC
    Biomaterials; 2003 Aug; 24(17):2933-40. PubMed ID: 12742733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical static failure analyses of total hip replacement interfaces.
    Kocak S; Sekercioglu T
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1183-1195. PubMed ID: 31545142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence.
    Lennon AB; Prendergast PJ
    J Biomech; 2002 Mar; 35(3):311-21. PubMed ID: 11858806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of curing history on residual stresses in bone cement during hip arthroplasty.
    Li C; Wang Y; Mason J
    J Biomed Mater Res B Appl Biomater; 2004 Jul; 70(1):30-6. PubMed ID: 15199580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of crack propagation paths at implant/bone-cement interfaces.
    McCormack BA; Prendergast PJ
    J Biomech Eng; 1996 Nov; 118(4):579-85. PubMed ID: 8950663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical implications of interfacial defects between femoral hip implants and cement: a finite element analysis of interfacial gaps and interfacial porosity.
    Scheerlinck T; Broos J; Janssen D; Verdonschot N
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1037-47. PubMed ID: 19024152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling debonded stem-cement interface for hip implants: effect of residual stresses.
    Nuño N; Amabili M
    Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):41-8. PubMed ID: 11779645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porosity reduction in bone cement at the cement-stem interface.
    Bishop NE; Ferguson S; Tepic S
    J Bone Joint Surg Br; 1996 May; 78(3):349-56. PubMed ID: 8636165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the stem fixation scenario on load transfer in a hip resurfacing arthroplasty with a biomimetic stem.
    Caouette C; Bureau MN; Vendittoli PA; Lavigne M; Nuño N
    J Mech Behav Biomed Mater; 2015 May; 45():90-100. PubMed ID: 25688031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond strength analysis of the bone cement- stem interface of hip arthroplasties.
    Zhang LF; Ge SR; Liu HT; Guo KJ; Han SY; Qi JY
    Asian Pac J Trop Med; 2014 Feb; 7(2):153-9. PubMed ID: 24461531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement.
    Lu Z; McKellop H
    J Biomed Mater Res; 1997 Feb; 34(2):221-6. PubMed ID: 9029302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.