These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Core-shell nanospheres for oligonucleotide delivery. V: adsorption/release behavior of 'stealth' nanospheres. Tondelli L; Ballestri M; Magnani L; Vivarelli D; Fini A; Cerasi A; Chiarantini L; Sparnacci K; Laus M J Biomater Sci Polym Ed; 2003; 14(11):1209-27. PubMed ID: 14768909 [TBL] [Abstract][Full Text] [Related]
3. Site-specific administration of antisense oligonucleotides using biodegradable polymer microspheres provides sustained delivery and improved subcellular biodistribution in the neostriatum of the rat brain. Khan A; Sommer W; Fuxe K; Akhtar S J Drug Target; 2000; 8(5):319-34. PubMed ID: 11328659 [TBL] [Abstract][Full Text] [Related]
4. Development of a sustained-release biodegradable polymer delivery system for site-specific delivery of oligonucleotides: characterization of P(LA-GA) copolymer microspheres in vitro. Lewis KJ; Irwin WJ; Akhtar S J Drug Target; 1998; 5(4):291-302. PubMed ID: 9713978 [TBL] [Abstract][Full Text] [Related]
5. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. Hussain M; Shchepinov M; Sohail M; Benter IF; Hollins AJ; Southern EM; Akhtar S J Control Release; 2004 Sep; 99(1):139-55. PubMed ID: 15342187 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient cellular uptake of c-myb antisense oligonucleotides through specifically designed polymeric nanospheres. Tondelli L; Ricca A; Laus M; Lelli M; Citro G Nucleic Acids Res; 1998 Dec; 26(23):5425-31. PubMed ID: 9826768 [TBL] [Abstract][Full Text] [Related]
7. Cationic polyhexylcyanoacrylate nanoparticles as carriers for antisense oligonucleotides. Zobel HP; Kreuter J; Werner D; Noe CR; Kümel G; Zimmer A Antisense Nucleic Acid Drug Dev; 1997 Oct; 7(5):483-93. PubMed ID: 9361907 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part II: characterization of antisense oligonucleotides loaded copolymer nanoparticles. Zobel HP; Stieneker F; Atmaca-Abdel Aziz S; Gilbert M; Werner D; Noe CR; Kreuter J; Zimmer A Eur J Pharm Biopharm; 1999 Jul; 48(1):1-12. PubMed ID: 10477322 [TBL] [Abstract][Full Text] [Related]
9. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. Gomes dos Santos AL; Bochot A; Doyle A; Tsapis N; Siepmann J; Siepmann F; Schmaler J; Besnard M; Behar-Cohen F; Fattal E J Control Release; 2006 May; 112(3):369-81. PubMed ID: 16644054 [TBL] [Abstract][Full Text] [Related]
10. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly. Pargaonkar N; Lvov YM; Li N; Steenekamp JH; de Villiers MM Pharm Res; 2005 May; 22(5):826-35. PubMed ID: 15906179 [TBL] [Abstract][Full Text] [Related]
11. Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation. Dinauer N; Lochmann D; Demirhan I; Bouazzaoui A; Zimmer A; Chandra A; Kreuter J; von Briesen H J Control Release; 2004 May; 96(3):497-507. PubMed ID: 15120905 [TBL] [Abstract][Full Text] [Related]
12. Cationic lipids reduce time and dose of c-myc antisense oligodeoxynucleotides required to specifically inhibit Burkitt's lymphoma cell growth. Williams SA; Chang L; Buzby JS; Suen Y; Cairo MS Leukemia; 1996 Dec; 10(12):1980-9. PubMed ID: 8946941 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical sensing of the behaviour of oligonucleotide lipoplexes at charged interfaces. Piedade JA; Mano M; de Lima MC; Oretskaya TS; Oliveira-Brett AM Biosens Bioelectron; 2004 Nov; 20(5):975-84. PubMed ID: 15530794 [TBL] [Abstract][Full Text] [Related]
14. Enhanced intracellular uptake and inhibition of NF-kappaB activation by decoy oligonucleotide released from PLGA microspheres. De Rosa G; Maiuri MC; Ungaro F; De Stefano D; Quaglia F; La Rotonda MI; Carnuccio R J Gene Med; 2005 Jun; 7(6):771-81. PubMed ID: 15702489 [TBL] [Abstract][Full Text] [Related]
15. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles. Zobel HP; Junghans M; Maienschein V; Werner D; Gilbert M; Zimmermann H; Noe C; Kreuter J; Zimmer A Eur J Pharm Biopharm; 2000 May; 49(3):203-10. PubMed ID: 10799810 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Föger F; Noonpakdee W; Loretz B; Joojuntr S; Salvenmoser W; Thaler M; Bernkop-Schnürch A Int J Pharm; 2006 Aug; 319(1-2):139-46. PubMed ID: 16713146 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-layer self-assembly of oppositely charged Ag nanoparticles on silica microspheres for trace analysis of aqueous solutions using surface-enhanced Raman scattering. Han Y; Sukhishvili S; Du H; Cefaloni J; Smolinski B J Nanosci Nanotechnol; 2008 Nov; 8(11):5791-800. PubMed ID: 19198307 [TBL] [Abstract][Full Text] [Related]
18. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Zhu SG; Xiang JJ; Li XL; Shen SR; Lu HB; Zhou J; Xiong W; Zhang BC; Nie XM; Zhou M; Tang K; Li GY Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):179-87. PubMed ID: 15032738 [TBL] [Abstract][Full Text] [Related]
19. [Study on polymethacrylate nanoparticles as delivery system of antisense oligodeoxynucleotides]. Wang WX; Chen HL; Liang WQ Yao Xue Xue Bao; 2003 Apr; 38(4):298-301. PubMed ID: 12889133 [TBL] [Abstract][Full Text] [Related]
20. Core-shell microspheres by dispersion polymerization as promising delivery systems for proteins. Sparnacci K; Laus M; Tondelli L; Bernardi C; Magnani L; Corticelli F; Marchisio M; Ensoli B; Castaldello A; Caputo A J Biomater Sci Polym Ed; 2005; 16(12):1557-74. PubMed ID: 16366337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]