These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 11922614)

  • 1. Role of tryptophan hydroxylase phe313 in determining substrate specificity.
    Daubner SC; Moran GR; Fitzpatrick PF
    Biochem Biophys Res Commun; 2002 Apr; 292(3):639-41. PubMed ID: 11922614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation to phenylalanine of tyrosine 371 in tyrosine hydroxylase increases the affinity for phenylalanine.
    Daubner SC; Fitzpatrick PF
    Biochemistry; 1998 Nov; 37(46):16440-4. PubMed ID: 9819237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity.
    McKinney J; Teigen K; Frøystein NA; Salaün C; Knappskog PM; Haavik J; Martínez A
    Biochemistry; 2001 Dec; 40(51):15591-601. PubMed ID: 11747434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling.
    Jiang GC; Yohrling GJ; Schmitt JD; Vrana KE
    J Mol Biol; 2000 Sep; 302(4):1005-17. PubMed ID: 10993738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.
    Daubner SC; Hillas PJ; Fitzpatrick PF
    Biochemistry; 1997 Sep; 36(39):11574-82. PubMed ID: 9305947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity.
    Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A
    J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylalanine residues in the active site of tyrosine hydroxylase: mutagenesis of Phe300 and Phe309 to alanine and metal ion-catalyzed hydroxylation of Phe300.
    Ellis HR; Daubner SC; McCulloch RI; Fitzpatrick PF
    Biochemistry; 1999 Aug; 38(34):10909-14. PubMed ID: 10460145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin synthesis by two distinct enzymes in Drosophila melanogaster.
    Coleman CM; Neckameyer WS
    Arch Insect Biochem Physiol; 2005 May; 59(1):12-31. PubMed ID: 15822093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metals and phenylalanine on the activity of human tryptophan hydroxylase-2: comparison with that on tyrosine hydroxylase activity.
    Ogawa S; Ichinose H
    Neurosci Lett; 2006 Jul; 401(3):261-5. PubMed ID: 16581181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2.
    Calvo AC; Scherer T; Pey AL; Ying M; Winge I; McKinney J; Haavik J; Thöny B; Martinez A
    J Neurochem; 2010 Aug; 114(3):853-63. PubMed ID: 20492352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers.
    Mockus SM; Yohrling GJ; Vrana KE
    J Mol Neurosci; 1998 Feb; 10(1):45-51. PubMed ID: 9589369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylalanine hydroxylase in melanoma cells.
    Breakefield XO; Castiglione CM; Halaban R; Pawelek J; Shiman R
    J Cell Physiol; 1978 Mar; 94(3):307-14. PubMed ID: 23386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine241 of tyrosine hydroxylase is not required for binding of tetrahydrobiopterin substrate.
    Daubner SC; Fitzpatrick PF
    Arch Biochem Biophys; 1993 May; 302(2):455-60. PubMed ID: 8098196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase.
    Fitzpatrick PF
    Arch Biochem Biophys; 2023 Feb; 735():109518. PubMed ID: 36639008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction energies between tetrahydrobiopterin analogues and aromatic residues in tyrosine hydroxylase and phenylalanine hydroxylase.
    Hofto ME; Cross JN; Cafiero M
    J Phys Chem B; 2007 Aug; 111(32):9651-4. PubMed ID: 17658743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of the MAP kinase ERK2 for phosphorylation of tyrosine hydroxylase.
    Royo M; Daubner SC; Fitzpatrick PF
    Arch Biochem Biophys; 2004 Mar; 423(2):247-52. PubMed ID: 15001389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of putative tryptophan monooxygenase from Ralstonia solanacearum [corrected].
    Kurosawa N; Hirata T; Suzuki H
    J Biochem; 2009 Jul; 146(1):23-32. PubMed ID: 19304791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.