These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11922663)
1. Postnatal development of zinc-rich terminal fields in the brain of the rat. Valente T; Auladell C; Pérez-Clausell J Exp Neurol; 2002 Apr; 174(2):215-29. PubMed ID: 11922663 [TBL] [Abstract][Full Text] [Related]
2. Response to kainic acid injections: changes in staining for zinc, FOS, cell death and glial response in the rat forebrain. Riba-Bosch A; Pérez-Clausell J Neuroscience; 2004; 125(3):803-18. PubMed ID: 15099693 [TBL] [Abstract][Full Text] [Related]
3. Zinc-rich transient vertical modules in the rat retrosplenial cortex during postnatal development. Miró-Bernié N; Ichinohe N; Pérez-Clausell J; Rockland KS Neuroscience; 2006; 138(2):523-35. PubMed ID: 16426767 [TBL] [Abstract][Full Text] [Related]
4. Postnatal development of zinc-containing cells and neuropil in the hippocampal region of the mouse. Slomianka L; Geneser FA Hippocampus; 1997; 7(3):321-40. PubMed ID: 9228529 [TBL] [Abstract][Full Text] [Related]
5. Histochemical demonstration of zinc in the hippocampal region of the domestic pig: I. Entorhinal area, parasubiculum, and presubiculum. Holm IE; Geneser FA J Comp Neurol; 1989 Sep; 287(2):145-63. PubMed ID: 2477401 [TBL] [Abstract][Full Text] [Related]
6. Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections. Casanovas-Aguilar C; Miró-Bernié N; Pérez-Clausell J Neuroscience; 2002; 110(3):445-58. PubMed ID: 11906785 [TBL] [Abstract][Full Text] [Related]
7. Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. Nakamura K; Hioki H; Fujiyama F; Kaneko T J Comp Neurol; 2005 Nov; 492(3):263-88. PubMed ID: 16217795 [TBL] [Abstract][Full Text] [Related]
8. Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal development. Land PW; Shamalla-Hannah L J Comp Neurol; 2002 May; 447(1):43-56. PubMed ID: 11967894 [TBL] [Abstract][Full Text] [Related]
9. Butyrylcholinesterase activity in the rat forebrain and upper brainstem: postnatal development and adult distribution. Geula C; Nagykery N Exp Neurol; 2007 Apr; 204(2):640-57. PubMed ID: 17274983 [TBL] [Abstract][Full Text] [Related]
10. Differential expression and localization of the phosphorylated and nonphosphorylated neurofilaments during the early postnatal development of rat hippocampus. Lopez-Picon FR; Uusi-Oukari M; Holopainen IE Hippocampus; 2003; 13(7):767-79. PubMed ID: 14620872 [TBL] [Abstract][Full Text] [Related]
11. Expression of brain-derived neurotrophic factor in the rat forebrain and upper brain stem during postnatal development: an immunohistochemical study. Kim JK; Jeon SM; Lee KM; Park ES; Cho HJ Neuroscience; 2007 May; 146(3):1128-36. PubMed ID: 17395388 [TBL] [Abstract][Full Text] [Related]
12. Zincergic innervation of the forebrain distinguishes epilepsy-prone from epilepsy-resistant rat strains. Flynn C; Brown CE; Galasso SL; McIntyre DC; Teskey GC; Dyck RH Neuroscience; 2007 Feb; 144(4):1409-14. PubMed ID: 17161545 [TBL] [Abstract][Full Text] [Related]
13. Postnatal development of noradrenergic terminals in the rat trigeminal motor nucleus: A light and electron microscopic immunocytochemical analysis. Min MY; Hsu PC; Lu HW; Lin CJ; Yang HW Anat Rec (Hoboken); 2007 Jan; 290(1):96-107. PubMed ID: 17441202 [TBL] [Abstract][Full Text] [Related]
14. Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Nakamura K; Watakabe A; Hioki H; Fujiyama F; Tanaka Y; Yamamori T; Kaneko T Eur J Neurosci; 2007 Dec; 26(11):3054-67. PubMed ID: 18028110 [TBL] [Abstract][Full Text] [Related]
15. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. Sherry DM; Wang MM; Bates J; Frishman LJ J Comp Neurol; 2003 Oct; 465(4):480-98. PubMed ID: 12975811 [TBL] [Abstract][Full Text] [Related]
16. Histochemical demonstration of zinc in the hippocampal region of the domestic pig: III. The dentate area. Holm IE; Geneser FA J Comp Neurol; 1991 Jun; 308(3):409-17. PubMed ID: 1865008 [TBL] [Abstract][Full Text] [Related]
17. Zinc-positive presynaptic boutons of the rabbit hippocampus during early postnatal development. Sanchez-Andres JV; Palop JJ; Ramirez C; Nacher J; Molowny A; Lopez-Gracia C Brain Res Dev Brain Res; 1997 Nov; 103(2):171-83. PubMed ID: 9427481 [TBL] [Abstract][Full Text] [Related]
18. Noradrenergic innervation of the developing and mature septal area of the rat. Antonopoulos J; Latsari M; Dori I; Chiotelli M; Parnavelas JG; Dinopoulos A J Comp Neurol; 2004 Aug; 476(1):80-90. PubMed ID: 15236468 [TBL] [Abstract][Full Text] [Related]
19. Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Takeda A; Tamano H; Tochigi M; Oku N Neurochem Int; 2005 Feb; 46(3):221-5. PubMed ID: 15670638 [TBL] [Abstract][Full Text] [Related]
20. Distribution and morphology of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit. I. Area dentata and hippocampus. Bjarkam CR; Sørensen JC; Geneser FA Hippocampus; 2003; 13(1):21-37. PubMed ID: 12625454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]