These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11922837)

  • 1. Molecular dynamics simulations of calcium-free calmodulin in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Apr; 19(5):801-19. PubMed ID: 11922837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of calcium-activated calmodulin in solution.
    Yang C; Jas GS; Kuczera K
    J Biomol Struct Dyn; 2001 Oct; 19(2):247-71. PubMed ID: 11697730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin.
    Yang C; Jas GS; Kuczera K
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):289-300. PubMed ID: 15023369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study.
    Houndonougbo Y; Kuczera K; Jas GS
    J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y; Watanabe H; Watanabe N; Aoyama A; Jinbo Y; Hayashi N
    Biochemistry; 2008 Jul; 47(27):7158-66. PubMed ID: 18553937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations.
    Houndonougbo Y; Kuczera K; Jas GS
    Biochemistry; 2005 Feb; 44(6):1780-92. PubMed ID: 15697203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of domain motions of substrate-free S-adenosyl- L-homocysteine hydrolase in solution.
    Hu C; Fang J; Borchardt RT; Schowen RL; Kuczera K
    Proteins; 2008 Apr; 71(1):131-43. PubMed ID: 17932938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-angle solution scattering reveals information on conformational dynamics in calcium-binding proteins and in their interactions with regulatory targets.
    Trewhella J; Krueger JK
    Methods Mol Biol; 2002; 173():137-59. PubMed ID: 11859757
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure and dynamics of calmodulin in solution.
    Wriggers W; Mehler E; Pitici F; Weinstein H; Schulten K
    Biophys J; 1998 Apr; 74(4):1622-39. PubMed ID: 9545028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helix A stabilization precedes amino-terminal lobe activation upon calcium binding to calmodulin.
    Chen B; Lowry DF; Mayer MU; Squier TC
    Biochemistry; 2008 Sep; 47(35):9220-6. PubMed ID: 18690719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
    Laine E; Yoneda JD; Blondel A; Malliavin TE
    Proteins; 2008 Jun; 71(4):1813-29. PubMed ID: 18175311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.
    Bertini I; Kursula P; Luchinat C; Parigi G; Vahokoski J; Wilmanns M; Yuan J
    J Am Chem Soc; 2009 Apr; 131(14):5134-44. PubMed ID: 19317469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ binding and conformational changes in a calmodulin domain.
    Evenäs J; Malmendal A; Thulin E; Carlström G; Forsén S
    Biochemistry; 1998 Sep; 37(39):13744-54. PubMed ID: 9753463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics and conformational change governing domain-domain interactions of calmodulin.
    O'Donnell SE; Newman RA; Witt TJ; Hultman R; Froehlig JR; Christensen AP; Shea MA
    Methods Enzymol; 2009; 466():503-26. PubMed ID: 21609874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions.
    Faga LA; Sorensen BR; VanScyoc WS; Shea MA
    Proteins; 2003 Feb; 50(3):381-91. PubMed ID: 12557181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin.
    Vigil D; Gallagher SC; Trewhella J; García AE
    Biophys J; 2001 May; 80(5):2082-92. PubMed ID: 11325712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study.
    Fiorin G; Biekofsky RR; Pastore A; Carloni P
    Proteins; 2005 Dec; 61(4):829-39. PubMed ID: 16193483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.