These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11922963)
1. Reversal of hypercapnia induces KATP channel and NO-independent constriction of basilar artery in rabbits with acute metabolic alkalosis. Yoon SH; Zuccarello M; Rapoport RM Gen Pharmacol; 2000 Dec; 35(6):325-32. PubMed ID: 11922963 [TBL] [Abstract][Full Text] [Related]
2. Reversal of hypercapnia induces endothelin-dependent constriction of basilar artery in rabbits with acute metabolic alkalosis. Yoon SH; Zuccarello M; Rapoport RM Gen Pharmacol; 2000 Dec; 35(6):333-40. PubMed ID: 11922964 [TBL] [Abstract][Full Text] [Related]
3. Hypocapnic constriction in rabbit basilar artery in vitro: triggering by N(G)-monomethyl-L-arginine monoacetate and dependence on endothelin-1 and alkalosis. Zuccarello M; Lee BH; Rapoport RM Eur J Pharmacol; 2000 Aug; 401(2):213-9. PubMed ID: 10924929 [TBL] [Abstract][Full Text] [Related]
4. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015 [TBL] [Abstract][Full Text] [Related]
5. Blockade of ATP-sensitive potassium channels in cerebral arterioles inhibits vasoconstriction from hypocapnic alkalosis in cats. Wei EP; Kontos HA Stroke; 1999 Apr; 30(4):851-3; discussion 854. PubMed ID: 10187890 [TBL] [Abstract][Full Text] [Related]
6. Hypocapnic constriction in rabbit basilar artery in vitro: triggering by serotonin and dependence on endothelin-1 and alkalosis. Zuccarello M; Lee B; Rapoport RM Eur J Pharmacol; 2000 Oct; 407(1-2):191-5. PubMed ID: 11050307 [TBL] [Abstract][Full Text] [Related]
7. Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Nakahata K; Kinoshita H; Hirano Y; Kimoto Y; Iranami H; Hatano Y Anesthesiology; 2003 Dec; 99(6):1333-9. PubMed ID: 14639145 [TBL] [Abstract][Full Text] [Related]
8. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation. Wang Q; Bryan RM; Pelligrino DA Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623 [TBL] [Abstract][Full Text] [Related]
9. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter. Sobey CG; Faraci FM Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945 [TBL] [Abstract][Full Text] [Related]
10. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME). Murphy TV; Kotecha N; Hill MA Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179 [TBL] [Abstract][Full Text] [Related]
11. Role of ATP-sensitive potassium channels in brain stem circulation during hypotension. Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Fujishima M Am J Physiol; 1997 Sep; 273(3 Pt 2):H1342-6. PubMed ID: 9321824 [TBL] [Abstract][Full Text] [Related]
12. Segmental pulmonary vascular responses to changes in pH in rat lungs: role of nitric oxide. Gao Y; Tassiopoulos AK; McGraw DJ; Hauser MC; Camporesi EM; Hakim TS Acta Anaesthesiol Scand; 1999 Jan; 43(1):64-70. PubMed ID: 9926191 [TBL] [Abstract][Full Text] [Related]
13. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis. Kinoshita H; Katusic ZS Stroke; 1997 Feb; 28(2):433-7; discussion 437-8. PubMed ID: 9040702 [TBL] [Abstract][Full Text] [Related]
14. Coronary flow regulation in mouse heart during hypercapnic acidosis: role of NO and its compensation during eNOS impairment. Heintz A; Damm M; Brand M; Koch T; Deussen A Cardiovasc Res; 2008 Jan; 77(1):188-96. PubMed ID: 18006478 [TBL] [Abstract][Full Text] [Related]
15. L-arginine and nitroglycerin restore hypercapnia-induced cerebral vasodilation in rabbits after its attenuation by ketamine. Nagase K; Iida H; Dohi S Anesth Analg; 2002 Apr; 94(4):954-8, table of contents. PubMed ID: 11916803 [TBL] [Abstract][Full Text] [Related]
16. Neuronal NO mediates cerebral vasodilator responses to K+ in hypertensive rats. Chrissobolis S; Ziogas J; Anderson CR; Chu Y; Faraci FM; Sobey CG Hypertension; 2002 Apr; 39(4):880-5. PubMed ID: 11967243 [TBL] [Abstract][Full Text] [Related]
17. Hypoxic vasoconstriction of rat main pulmonary artery: role of endogenous nitric oxide, potassium channels, and phosphodiesterase inhibition. Bardou M; Goirand F; Marchand S; Rouget C; Devillier P; Dumas JP; Morcillo EJ; Rochette L; Dumas M J Cardiovasc Pharmacol; 2001 Aug; 38(2):325-34. PubMed ID: 11483882 [TBL] [Abstract][Full Text] [Related]
18. Increased activity of calcium channels and Rho-associated kinase in the basilar artery during chronic hypertension in vivo. Kitazono T; Ago T; Kamouchi M; Santa N; Ooboshi H; Fujishima M; Ibayashi S J Hypertens; 2002 May; 20(5):879-84. PubMed ID: 12011648 [TBL] [Abstract][Full Text] [Related]
19. The role of endothelium-derived nitric oxide in relaxations to levcromakalim in the rat aorta. Kinoshita H; Iwahashi S; Kakutani T; Mizumoto K; Iranami H; Hatano Y Jpn J Pharmacol; 1999 Dec; 81(4):362-6. PubMed ID: 10669041 [TBL] [Abstract][Full Text] [Related]
20. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression. Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]