BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11923317)

  • 1. Plasticity of recognition of the 3'-end of mischarged tRNA by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    J Biol Chem; 2002 Jun; 277(23):20510-7. PubMed ID: 11923317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases.
    Shepherd J; Ibba M
    mBio; 2014 Sep; 5(5):e01656-14. PubMed ID: 25205097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases.
    Dulic M; Cvetesic N; Perona JJ; Gruic-Sovulj I
    J Biol Chem; 2010 Jul; 285(31):23799-809. PubMed ID: 20498377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity.
    Ruan LL; Zhou XL; Tan M; Wang ED
    Biochem J; 2013 Feb; 450(1):243-52. PubMed ID: 23210460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misacylation and editing by Escherichia coli valyl-tRNA synthetase: evidence for two tRNA binding sites.
    Tardif KD; Liu M; Vitseva O; Hou YM; Horowitz J
    Biochemistry; 2001 Jul; 40(27):8118-25. PubMed ID: 11434781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A present-day aminoacyl-tRNA synthetase with ancestral editing properties.
    Zhu B; Zhao MW; Eriani G; Wang ED
    RNA; 2007 Jan; 13(1):15-21. PubMed ID: 17095543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.
    Boyarshin KS; Priss AE; Rayevskiy AV; Ilchenko MM; Dubey IY; Kriklivyi IA; Yaremchuk AD; Tukalo MA
    J Biomol Struct Dyn; 2017 Feb; 35(3):669-682. PubMed ID: 26886480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resampling and editing of mischarged tRNA prior to translation elongation.
    Ling J; So BR; Yadavalli SS; Roy H; Shoji S; Fredrick K; Musier-Forsyth K; Ibba M
    Mol Cell; 2009 Mar; 33(5):654-60. PubMed ID: 19285947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-editing by aminoacyl-tRNA synthetase-like editing domains.
    Kuzmishin Nagy AB; Bakhtina M; Musier-Forsyth K
    Enzymes; 2020; 48():69-115. PubMed ID: 33837712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification.
    Nakatsuka-Mori T; Sato D; Aoki H
    J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proofreading in trans by an aminoacyl-tRNA synthetase: a model for single site editing by isoleucyl-tRNA synthetase.
    Jakubowski H
    Nucleic Acids Res; 1996 Jul; 24(13):2505-10. PubMed ID: 8692688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates.
    Bharatham N; Bharatham K; Lee Y; Woo Lee K
    Biophys Chem; 2009 Jul; 143(1-2):34-43. PubMed ID: 19398261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases.
    Zivkovic I; Ivkovic K; Cvetesic N; Marsavelski A; Gruic-Sovulj I
    Nucleic Acids Res; 2022 Apr; 50(7):4029-4041. PubMed ID: 35357484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
    Dulic M; Perona JJ; Gruic-Sovulj I
    Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis.
    Jakubowski H
    Biochemistry; 1998 Apr; 37(15):5147-53. PubMed ID: 9548745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase.
    Hountondji C; Lazennec C; Beauvallet C; Dessen P; Pernollet JC; Plateau P; Blanquet S
    Biochemistry; 2002 Dec; 41(50):14856-65. PubMed ID: 12475234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.