These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 11923415)

  • 21. Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation.
    Takazawa T; Choudhury P; Tong CK; Conway CM; Scherrer G; Flood PD; Mukai J; MacDermott AB
    J Neurosci; 2017 Mar; 37(9):2336-2348. PubMed ID: 28130358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low level expression of glycine receptor beta subunit transgene is sufficient for phenotype correction in spastic mice.
    Hartenstein B; Schenkel J; Kuhse J; Besenbeck B; Kling C; Becker CM; Betz H; Weiher H
    EMBO J; 1996 Mar; 15(6):1275-82. PubMed ID: 8635460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Despite GABAergic neurotransmission, GABAergic innervation does not compensate for the defect in glycine receptor postsynaptic aggregation in spastic mice.
    Muller E; Le Corronc H; Scain AL; Triller A; Legendre P
    Eur J Neurosci; 2008 May; 27(10):2529-41. PubMed ID: 18445051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study.
    Waldvogel HJ; Baer K; Eady E; Allen KL; Gilbert RT; Mohler H; Rees MI; Nicholson LF; Faull RL
    J Comp Neurol; 2010 Feb; 518(3):305-28. PubMed ID: 19950251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease.
    Wiessler AL; Hasenmüller AS; Fuhl I; Mille C; Cortes Campo O; Reinhard N; Schenk J; Heinze KG; Schaefer N; Specht CG; Villmann C
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37963764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal inhibitory synaptic transmission in the glycine receptor mouse mutant spastic.
    von Wegerer J; Becker K; Glockenhammer D; Becker CM; Zeilhofer HU; Swandulla D
    Neurosci Lett; 2003 Jul; 345(1):45-8. PubMed ID: 12809985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons.
    Anderson WB; Graham BA; Beveridge NJ; Tooney PA; Brichta AM; Callister RJ
    Mol Pain; 2009 Nov; 5():65. PubMed ID: 19919721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperekplexia: a treatable neurogenetic disease.
    Zhou L; Chillag KL; Nigro MA
    Brain Dev; 2002 Oct; 24(7):669-74. PubMed ID: 12427512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered sedative effects of ethanol in mice with α1 glycine receptor subunits that are insensitive to Gβγ modulation.
    Aguayo LG; Castro P; Mariqueo T; Muñoz B; Xiong W; Zhang L; Lovinger DM; Homanics GE
    Neuropsychopharmacology; 2014 Oct; 39(11):2538-48. PubMed ID: 24801766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations.
    Zhang Y; Dixon CL; Keramidas A; Lynch JW
    Neuropharmacology; 2015 Feb; 89():391-7. PubMed ID: 25445488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB).
    Rees MI; Lewis TM; Kwok JB; Mortier GR; Govaert P; Snell RG; Schofield PR; Owen MJ
    Hum Mol Genet; 2002 Apr; 11(7):853-60. PubMed ID: 11929858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional recovery of glycine receptors in spastic murine model of startle disease.
    Molon A; Di Giovanni S; Hathout Y; Natale J; Hoffman EP
    Neurobiol Dis; 2006 Feb; 21(2):291-304. PubMed ID: 16182553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of glycine receptor α1 subunits in cannabinoid-induced analgesia.
    Lu J; Fan S; Zou G; Hou Y; Pan T; Guo W; Yao L; Du F; Homanics GE; Liu D; Zhang L; Xiong W
    Neuropharmacology; 2018 May; 133():224-232. PubMed ID: 29407767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycine receptors and GABA receptor alpha 1 and gamma 2 subunits during the development of mouse hypoglossal nucleus.
    Muller E; Triller A; Legendre P
    Eur J Neurosci; 2004 Dec; 20(12):3286-300. PubMed ID: 15610161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β Subunit M2-M3 loop conformational changes are uncoupled from α1 β glycine receptor channel gating: implications for human hereditary hyperekplexia.
    Shan Q; Han L; Lynch JW
    PLoS One; 2011; 6(11):e28105. PubMed ID: 22132222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia.
    Rees MI; Harvey K; Ward H; White JH; Evans L; Duguid IC; Hsu CC; Coleman SL; Miller J; Baer K; Waldvogel HJ; Gibbon F; Smart TG; Owen MJ; Harvey RJ; Snell RG
    J Biol Chem; 2003 Jul; 278(27):24688-96. PubMed ID: 12684523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission.
    Safory H; Neame S; Shulman Y; Zubedat S; Radzishevsky I; Rosenberg D; Sason H; Engelender S; Avital A; Hülsmann S; Schiller J; Wolosker H
    EMBO Rep; 2015 May; 16(5):590-8. PubMed ID: 25755256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality.
    Gomeza J; Ohno K; Hülsmann S; Armsen W; Eulenburg V; Richter DW; Laube B; Betz H
    Neuron; 2003 Nov; 40(4):797-806. PubMed ID: 14622583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.