BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 11925006)

  • 21. A novel allosteric potentiator of AMPA receptors: 4--2-(phenylsulfonylamino)ethylthio--2,6-difluoro-phenoxyaceta mide.
    Sekiguchi M; Fleck MW; Mayer ML; Takeo J; Chiba Y; Yamashita S; Wada K
    J Neurosci; 1997 Aug; 17(15):5760-71. PubMed ID: 9221774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NS-257, a novel competitive AMPA receptor antagonist, interacts with kainate and NMDA receptors.
    Nijholt I; Blank T; Grafelmann B; Cepok S; Kügler H; Spiess J
    Brain Res; 1999 Mar; 821(2):374-82. PubMed ID: 10064824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionotropic glutamate receptors in isolated horizontal cells of the rabbit retina.
    Blanco R; de la Villa P
    Eur J Neurosci; 1999 Mar; 11(3):867-73. PubMed ID: 10103080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of GYKI 52466 and NBQX with cyclothiazide at AMPA receptors: experiments with outside-out patches and EPSCs in hippocampal neurones.
    Rammes G; Swandulla D; Spielmanns P; Parsons CG
    Neuropharmacology; 1998; 37(10-11):1299-320. PubMed ID: 9849667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells.
    Kreitzer MA; Birnbaum AD; Qian H; Malchow RP
    Vis Neurosci; 2009; 26(4):375-87. PubMed ID: 19678977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-expression of AMPA/kainate receptor-operated channels with high and low Ca2+ permeability in single rat retinal ganglion cells.
    Zhang D; Sucher NJ; Lipton SA
    Neuroscience; 1995 Jul; 67(1):177-88. PubMed ID: 7477898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AMPA receptors on developing medial septum/diagonal band neurons are sensitive to early postnatal binge-like ethanol exposure.
    Hsiao SH; Frye GD
    Brain Res Dev Brain Res; 2003 Apr; 142(1):89-99. PubMed ID: 12694947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death.
    Gasull T; DeGregorio-Rocasolano N; Trullas R
    J Neurochem; 2001 Apr; 77(1):13-22. PubMed ID: 11279257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells.
    Lukasiewicz PD; Lawrence JE; Valentino TL
    J Neurosci; 1995 Sep; 15(9):6189-99. PubMed ID: 7666201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via non-NMDA receptors in cultured rat hippocampal neurons.
    Vignes M
    Neuropharmacology; 2001 May; 40(6):737-48. PubMed ID: 11369028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desensitization of AMPA receptors on horizontal cells isolated from crucian carp retina.
    Lu T; Shen Y; Yang XL
    Neurosci Res; 1998 Jun; 31(2):123-35. PubMed ID: 9700718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining.
    Jensen JB; Schousboe A; Pickering DS
    J Neurosci Res; 1998 Oct; 54(2):273-81. PubMed ID: 9788286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus.
    Koh DS; Geiger JR; Jonas P; Sakmann B
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):383-402. PubMed ID: 7545230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus.
    Harata N; Katayama J; Akaike N
    Neuroscience; 1999 Mar; 89(1):109-25. PubMed ID: 10051221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYKI 53784 (LY303070), a specific non-competitive AMPA antagonist.
    Ruel J; Guitton MJ; Puell JL
    CNS Drug Rev; 2002; 8(3):235-54. PubMed ID: 12353057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors.
    Schuettauf F; Naskar R; Vorwerk CK; Zurakowski D; Dreyer EB
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4313-6. PubMed ID: 11095632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits.
    Fukushima K; Hatanaka K; Sagane K; Ido K
    Epilepsy Res; 2020 Nov; 167():106452. PubMed ID: 32911258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glutamate receptor/NO/cyclic GMP pathway in the hippocampus of freely moving rats: modulation by cyclothiazide, interaction with GABA and the behavioural consequences.
    Fedele E; Conti A; Raiteri M
    Neuropharmacology; 1997 Oct; 36(10):1393-403. PubMed ID: 9423927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological and molecular characterization of glutamate receptors in the MIN6 pancreatic beta-cell line.
    Morley P; MacLean S; Gendron TF; Small DL; Tremblay R; Durkin JP; Mealing G
    Neurol Res; 2000 Jun; 22(4):379-85. PubMed ID: 10874687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles.
    Bleakman D; Ballyk BA; Schoepp DD; Palmer AJ; Bath CP; Sharpe EF; Woolley ML; Bufton HR; Kamboj RK; Tarnawa I; Lodge D
    Neuropharmacology; 1996; 35(12):1689-702. PubMed ID: 9076748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.