These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11925046)

  • 1. Isolation and characterization of lipid in phloem sap of canola.
    Madey E; Nowack LM; Thompson JE
    Planta; 2002 Feb; 214(4):625-34. PubMed ID: 11925046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content.
    Lohaus G; Moellers C
    Planta; 2000 Nov; 211(6):833-40. PubMed ID: 11144268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of fatty acids from the flowers of Trollius chinensis].
    Wang RF; Yang XW; Ma CM; Cai SQ; Xu TH
    Zhong Yao Cai; 2010 Oct; 33(10):1579-81. PubMed ID: 21355196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipids of Clostridium perfringens: a reexamination.
    Johnston NC; Baker JK; Goldfine H
    FEMS Microbiol Lett; 2004 Apr; 233(1):65-8. PubMed ID: 15043870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus.
    Lohaus G; Schwerdtfeger M
    PLoS One; 2014; 9(1):e87689. PubMed ID: 24489951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems.
    Wang G; Lin Q; Xu Y
    Phytochemistry; 2007 Aug; 68(15):2112-7. PubMed ID: 17568638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst).
    Gessler A; Weber P; Schneider S; Rennenberg H
    J Exp Bot; 2003 May; 54(386):1389-97. PubMed ID: 12709485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of L-ascorbic acid in the phloem.
    Hancock RD; McRae D; Haupt S; Viola R
    BMC Plant Biol; 2003 Nov; 3():7. PubMed ID: 14633288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants.
    Franceschi VR; Tarlyn NM
    Plant Physiol; 2002 Oct; 130(2):649-56. PubMed ID: 12376632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions.
    Tilsner J; Kassner N; Struck C; Lohaus G
    Planta; 2005 Jun; 221(3):328-38. PubMed ID: 15599760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsomal preparations from plant and yeast acylate free fatty acids without prior activation to acyl-thioesters.
    Neal A; Banaś A; Banaś W; Ståhl U; Carlsson AS; Stymne S
    Biochim Biophys Acta; 2006 Jul; 1761(7):757-64. PubMed ID: 16798074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils.
    Reynolds KB; Taylor MC; Cullerne DP; Blanchard CL; Wood CC; Singh SP; Petrie JR
    Plant Biotechnol J; 2017 Nov; 15(11):1397-1408. PubMed ID: 28301719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylem sap protein composition is conserved among different plant species.
    Buhtz A; Kolasa A; Arlt K; Walz C; Kehr J
    Planta; 2004 Aug; 219(4):610-8. PubMed ID: 15064951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloem transport in gymnosperms: a question of pressure and resistance.
    Liesche J; Schulz A
    Curr Opin Plant Biol; 2018 Jun; 43():36-42. PubMed ID: 29304388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No induction of beta-oxidation in leaves of Arabidopsis that over-produce lauric acid.
    Hooks MA; Fleming Y; Larson TR; Graham IA
    Planta; 1999 Jan; 207(3):385-92. PubMed ID: 9951734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L.
    Wiberg E; Edwards P; Byrne J; Stymne S; Dehesh K
    Planta; 2000 Dec; 212(1):33-40. PubMed ID: 11219581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of small RNAs from the phloem of Brassica napus.
    Buhtz A; Springer F; Chappell L; Baulcombe DC; Kehr J
    Plant J; 2008 Mar; 53(5):739-49. PubMed ID: 18005229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloem networks in leaves.
    Carvalho MR; Losada JM; Niklas KJ
    Curr Opin Plant Biol; 2018 Jun; 43():29-35. PubMed ID: 29306742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa.
    Lee MS; Guerra DJ
    Arch Biochem Biophys; 1994 Nov; 315(1):203-11. PubMed ID: 7979400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.
    Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W
    PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.