BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11925139)

  • 1. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo).
    Neviliappan S; Fang Kan L; Tiang Lee Walter T; Arulkumaran S; Wong PT
    Gynecol Oncol; 2002 Apr; 85(1):170-4. PubMed ID: 11925139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo). By Neviliappan S, et al.
    Chiriboga L; Yee H; Diem M; Wood B
    Gynecol Oncol; 2003 Oct; 91(1):275-6; author reply 276-7. PubMed ID: 14529695
    [No Abstract]   [Full Text] [Related]  

  • 3. [Fourier transform infrared spectroscopy study on normal and malignant tissues of cervix].
    Li WX; Zheng QQ; Wang P; Li YQ; Chen GH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1833-7. PubMed ID: 17205732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy.
    Chiriboga L; Xie P; Yee H; Zarou D; Zakim D; Diem M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):219-29. PubMed ID: 9551653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis.
    Wong PT; Wong RK; Caputo TA; Godwin TA; Rigas B
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):10988-92. PubMed ID: 1763013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of exfoliated cervical cells by infrared microscopy.
    Lowry SR
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):169-77. PubMed ID: 9551648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy.
    Romeo MJ; Wood BR; Quinn MA; McNaughton D
    Biopolymers; 2003; 72(1):69-76. PubMed ID: 12400093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells.
    Wong PT; Senterman MK; Jackli P; Wong RK; Salib S; Campbell CE; Feigel R; Faught W; Fung Kee Fung M
    Biopolymers; 2002; 67(6):376-86. PubMed ID: 12209445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distinctive infrared spectral features in human breast cancer].
    Shen S; Liu B; Ma X; Song Z; Li Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Feb; 20(1):28-30. PubMed ID: 12953444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopic analysis of tumor pathology.
    Mehrotra R; Gupta A; Kaushik A; Prakash N; Kandpal H
    Indian J Exp Biol; 2007 Jan; 45(1):71-6. PubMed ID: 17249330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation.
    Hastings G; Wang R; Krug P; Katz D; Hilliard J
    Biopolymers; 2008 Nov; 89(11):921-30. PubMed ID: 18561192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared spectroscopy of gallbladder carcinoma cell line.
    Du JK; Shi JS; Sun XJ; Wang JS; Xu YZ; Wu JG; Zhang YF; Weng SF
    Hepatobiliary Pancreat Dis Int; 2009 Feb; 8(1):75-8. PubMed ID: 19208520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues.
    Rigas B; Wong PT
    Cancer Res; 1992 Jan; 52(1):84-8. PubMed ID: 1727389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The novel serine protease tumor-associated differentially expressed gene-14 (KLK8/Neuropsin/Ovasin) is highly overexpressed in cervical cancer.
    Cané S; Bignotti E; Bellone S; Palmieri M; De las Casas L; Roman JJ; Pecorelli S; Cannon MJ; O'brien T; Santin AD
    Am J Obstet Gynecol; 2004 Jan; 190(1):60-6. PubMed ID: 14749636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of spermatozoa and seminal plasma by fourier transform infrared spectroscopy.
    Barcot O; Balarin M; Gamulin O; Jezek D; Romac P; Brnjas-Kraljević J
    Appl Spectrosc; 2007 Mar; 61(3):309-13. PubMed ID: 17389071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study.
    Maziak DE; Do MT; Shamji FM; Sundaresan SR; Perkins DG; Wong PT
    Cancer Detect Prev; 2007; 31(3):244-53. PubMed ID: 17646059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [FTIR study on the normal and cancerous stomach tissues].
    Tong Y; Lin Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Jun; 21(3):324-7. PubMed ID: 12947658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques.
    Wu JG; Xu YZ; Sun CW; Soloway RD; Xu DF; Wu QG; Sun KH; Weng SF; Xu GX
    Biopolymers; 2001; 62(4):185-92. PubMed ID: 11391568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study.
    Gazi E; Dwyer J; Gardner P; Ghanbari-Siahkali A; Wade AP; Miyan J; Lockyer NP; Vickerman JC; Clarke NW; Shanks JH; Scott LJ; Hart CA; Brown M
    J Pathol; 2003 Sep; 201(1):99-108. PubMed ID: 12950022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.