These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 11926817)
21. Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling. Lutz J; Romano-Götsch R; Escrieut C; Fourmy D; Mathä B; Müller G; Kessler H; Moroder L Biopolymers; 1997 Jun; 41(7):799-817. PubMed ID: 9128441 [TBL] [Abstract][Full Text] [Related]
22. Direct identification of a second distinct site of contact between cholecystokinin and its receptor. Hadac EM; Pinon DI; Ji Z; Holicky EL; Henne RM; Lybrand TP; Miller LJ J Biol Chem; 1998 May; 273(21):12988-93. PubMed ID: 9582333 [TBL] [Abstract][Full Text] [Related]
23. New evidence for a membrane-bound pathway in hormone receptor binding. Moroder L; Romano R; Guba W; Mierke DF; Kessler H; Delporte C; Winand J; Christophe J Biochemistry; 1993 Dec; 32(49):13551-9. PubMed ID: 7504952 [TBL] [Abstract][Full Text] [Related]
24. Ac-[3- and 4-alkylthioproline31]-CCK4 analogs: synthesis and implications for the CCK-B receptor-bound conformation. Kolodziej SA; Nikiforovich GV; Skeean R; Lignon MF; Martinez J; Marshall GR J Med Chem; 1995 Jan; 38(1):137-49. PubMed ID: 7837225 [TBL] [Abstract][Full Text] [Related]
25. Receptor fragment approach to the binding between CCK8 peptide and cholecystokinin receptors: a fluorescence study on type B receptor fragment CCK(B)-R (352-379). De Luca S; Sanseverino M; Zocchi I; Pedone C; Morelli G; Ragone R Biopolymers; 2005 Mar; 77(4):205-11. PubMed ID: 15666329 [TBL] [Abstract][Full Text] [Related]
26. Identification of cholecystokinin-B/gastrin receptor domains that confer high gastrin affinity: utilization of a novel Xenopus laevis cholecystokinin receptor. Schmitz F; Pratt DS; Wu MJ; Kolakowski LF; Beinborn M; Kopin AS Mol Pharmacol; 1996 Aug; 50(2):436-41. PubMed ID: 8700154 [TBL] [Abstract][Full Text] [Related]
27. Sequence variation outside the "active" region of dog and rabbit cholecystokinin-58 results in bioactivity differences. Reeve JR; Liddle RA; Shively JE; Lee TD; Keire DA; Chew P; Vigna SR Pancreas; 2006 Apr; 32(3):306-13. PubMed ID: 16628087 [TBL] [Abstract][Full Text] [Related]
28. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. Ji Z; Hadac EM; Henne RM; Patel SA; Lybrand TP; Miller LJ J Biol Chem; 1997 Sep; 272(39):24393-401. PubMed ID: 9305898 [TBL] [Abstract][Full Text] [Related]
29. Evidence for a direct interaction between the penultimate aspartic acid of cholecystokinin and histidine 207, located in the second extracellular loop of the cholecystokinin B receptor. Silvente-Poirot S; Escrieut C; Galès C; Fehrentz JA; Escherich A; Wank SA; Martinez J; Moroder L; Maigret B; Bouisson M; Vaysse N; Fourmy D J Biol Chem; 1999 Aug; 274(33):23191-7. PubMed ID: 10438490 [TBL] [Abstract][Full Text] [Related]
30. Arginine 336 and asparagine 333 of the human cholecystokinin-A receptor binding site interact with the penultimate aspartic acid and the C-terminal amide of cholecystokinin. Gigoux V; Escrieut C; Fehrentz JA; Poirot S; Maigret B; Moroder L; Gully D; Martinez J; Vaysse N; Fourmy D J Biol Chem; 1999 Jul; 274(29):20457-64. PubMed ID: 10400673 [TBL] [Abstract][Full Text] [Related]
31. Arginine 197 of the cholecystokinin-A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin. Gigoux V; Maigret B; Escrieut C; Silvente-Poirot S; Bouisson M; Fehrentz JA; Moroder L; Gully D; Martinez J; Vaysse N; Fourmy AD Protein Sci; 1999 Nov; 8(11):2347-54. PubMed ID: 10595537 [TBL] [Abstract][Full Text] [Related]
32. NMR studies of CCK-8/CCK1 complex support membrane-associated pathway for ligand-receptor interaction. Giragossian C; Pellegrini M; Mierke DF Can J Physiol Pharmacol; 2002 May; 80(5):383-7. PubMed ID: 12056543 [TBL] [Abstract][Full Text] [Related]
33. CCK1 and 2 receptors are expressed in immortalized rat brain neuroblasts: intracellular signals after cholecystokinin stimulation. Langmesser S; Cerezo-Guisado MI; Lorenzo MJ; Garcia-Marin LJ; Bragado MJ J Cell Biochem; 2007 Mar; 100(4):851-64. PubMed ID: 17226751 [TBL] [Abstract][Full Text] [Related]
34. Direct identification of the agonist binding site in the human brain cholecystokininB receptor. Anders J; Blüggel M; Meyer HE; Kühne R; ter Laak AM; Kojro E; Fahrenholz F Biochemistry; 1999 May; 38(19):6043-55. PubMed ID: 10320330 [TBL] [Abstract][Full Text] [Related]
35. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Marchal-Victorion S; Vionnet N; Escrieut C; Dematos F; Dina C; Dufresne M; Vaysse N; Pradayrol L; Froguel P; Fourmy D Pharmacogenetics; 2002 Jan; 12(1):23-30. PubMed ID: 11773861 [TBL] [Abstract][Full Text] [Related]
36. CCK-A- and CCK-B-like receptors in the gallbladder and stomach of the alligator (Alligator mississippiensis). Oliver AS; Vigna SR Gen Comp Endocrinol; 1997 Jan; 105(1):91-101. PubMed ID: 9000471 [TBL] [Abstract][Full Text] [Related]
37. Molecular modelling of CCK-A receptors. Van Der Bent A; Ijzerman AP; Soudijn W Drug Des Discov; 1994 Nov; 12(2):129-48. PubMed ID: 9116168 [TBL] [Abstract][Full Text] [Related]
38. Cholecystokinin (CCK) stimulates aldosterone secretion from human adrenocortical cells via CCK2 receptors coupled to the adenylate cyclase/protein kinase A signaling cascade. Mazzocchi G; Malendowicz LK; Aragona F; Spinazzi R; Nussdorfer GG J Clin Endocrinol Metab; 2004 Mar; 89(3):1277-84. PubMed ID: 15001623 [TBL] [Abstract][Full Text] [Related]
39. Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Harikumar KG; Dong M; Cheng Z; Pinon DI; Lybrand TP; Miller LJ Biochemistry; 2006 Dec; 45(49):14706-16. PubMed ID: 17144663 [TBL] [Abstract][Full Text] [Related]
40. A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. Hadac EM; Ji Z; Pinon DI; Henne RM; Lybrand TP; Miller LJ J Med Chem; 1999 Jun; 42(12):2105-11. PubMed ID: 10377216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]