BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1611 related articles for article (PubMed ID: 11926828)

  • 21. A novel GDP-mannose mannosyl hydrolase shares homology with the MutT family of enzymes.
    Frick DN; Townsend BD; Bessman MJ
    J Biol Chem; 1995 Oct; 270(41):24086-91. PubMed ID: 7592609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron spin echo modulation and nuclear relaxation studies of staphylococcal nuclease and its metal-coordinating mutants.
    Serpersu EH; McCracken J; Peisach J; Mildvan AS
    Biochemistry; 1988 Oct; 27(21):8034-44. PubMed ID: 2852950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR.
    Lin J; Abeygunawardana C; Frick DN; Bessman MJ; Mildvan AS
    Biochemistry; 1996 May; 35(21):6715-26. PubMed ID: 8639622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and specificity of human alpha-1,3-fucosyltransferase V.
    Murray BW; Takayama S; Schultz J; Wong CH
    Biochemistry; 1996 Aug; 35(34):11183-95. PubMed ID: 8780523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.
    Sullivan SM; Holyoak T
    Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu.
    Wilson GE; Cohn M
    J Biol Chem; 1977 Mar; 252(6):2004-9. PubMed ID: 191448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods.
    Feuerstein J; Kalbitzer HR; John J; Goody RS; Wittinghofer A
    Eur J Biochem; 1987 Jan; 162(1):49-55. PubMed ID: 3028791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and magnetic resonance studies of effects of genetic substitution of a Ca2+-liganding amino acid in staphylococcal nuclease.
    Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1986 Jan; 25(1):68-77. PubMed ID: 3513826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR studies of the conformations and location of nucleotides bound to the Escherichia coli MutT enzyme.
    Frick DN; Weber DJ; Abeygunawardana C; Gittis AG; Bessman MJ; Mildvan AS
    Biochemistry; 1995 Apr; 34(16):5577-86. PubMed ID: 7727419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic and structural role of the metal ion in dUTP pyrophosphatase.
    Mustafi D; Bekesi A; Vertessy BG; Makinen MW
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5670-5. PubMed ID: 12721364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tubulin exchanges divalent cations at both guanine nucleotide-binding sites.
    Correia JJ; Beth AH; Williams RC
    J Biol Chem; 1988 Aug; 263(22):10681-6. PubMed ID: 3392036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure and mechanism of the MutT pyrophosphohydrolase.
    Mildvan AS; Weber DJ; Abeygunawardana C
    Adv Enzymol Relat Areas Mol Biol; 1999; 73():183-207. PubMed ID: 10218109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for substrate selectivity and specificity by an LPS biosynthetic enzyme.
    Zou Y; Li C; Brunzelle JS; Nair SK
    Biochemistry; 2007 Apr; 46(14):4294-304. PubMed ID: 17371001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence-specific assignments of the backbone 1H, 13C, and 15N resonances of the MutT enzyme by heteronuclear multidimensional NMR.
    Abeygunawardana C; Weber DJ; Frick DN; Bessman MJ; Mildvan AS
    Biochemistry; 1993 Dec; 32(48):13071-80. PubMed ID: 8241161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the second metal site on avian phosphoenolpyruvate carboxykinase.
    Hlavaty JJ; Nowak T
    Biochemistry; 2000 Feb; 39(6):1373-88. PubMed ID: 10684618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL; Gupta BK
    Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 81.