BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11927263)

  • 21. Pentacoordinated phosphorus revisited by high-level QM/MM calculations.
    Marcos E; Field MJ; Crehuet R
    Proteins; 2010 Aug; 78(11):2405-11. PubMed ID: 20602355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The phosphoryl-transfer mechanism of Escherichia coli phosphoenolpyruvate carboxykinase from the use of AlF(3).
    Sudom AM; Prasad L; Goldie H; Delbaere LT
    J Mol Biol; 2001 Nov; 314(1):83-92. PubMed ID: 11724534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride.
    Graham DL; Eccleston JF; Lowe PN
    Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.
    Yi F; Kong R; Ren J; Zhu L; Lou J; Wu JY; Feng W
    J Mol Biol; 2016 Jul; 428(15):3043-57. PubMed ID: 27363609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila.
    Miles RD; Gorrell A; Ferry JG
    J Biol Chem; 2002 Jun; 277(25):22547-52. PubMed ID: 11960978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH influences fluoride coordination number of the AlFx phosphoryl transfer transition state analog.
    Schlichting I; Reinstein J
    Nat Struct Biol; 1999 Aug; 6(8):721-3. PubMed ID: 10426946
    [No Abstract]   [Full Text] [Related]  

  • 27. Reaction dynamics of G-protein catalyzed hydrolysis of GTP as viewed by X-ray crystallographic snapshots of Gi alpha 1.
    Coleman DE; Sprang SR
    Methods Enzymol; 1999; 308():70-92. PubMed ID: 10507001
    [No Abstract]   [Full Text] [Related]  

  • 28. Crystal structure of mouse RhoA:GTPγS complex in a centered lattice.
    Jobichen C; Pal K; Swaminathan K
    J Struct Funct Genomics; 2012 Dec; 13(4):241-5. PubMed ID: 23001747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer.
    Johnston CA; Lobanova ES; Shavkunov AS; Low J; Ramer JK; Blaesius R; Fredericks Z; Willard FS; Kuhlman B; Arshavsky VY; Siderovski DP
    Biochemistry; 2006 Sep; 45(38):11390-400. PubMed ID: 16981699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase.
    Madhusudan ; Akamine P; Xuong NH; Taylor SS
    Nat Struct Biol; 2002 Apr; 9(4):273-7. PubMed ID: 11896404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the size and chemical nature of the stabilizing "cap" at microtubule ends using modulators of polymerization dynamics.
    Panda D; Miller HP; Wilson L
    Biochemistry; 2002 Feb; 41(5):1609-17. PubMed ID: 11814355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
    Scheffzek K; Ahmadian MR; Kabsch W; Wiesmüller L; Lautwein A; Schmitz F; Wittinghofer A
    Science; 1997 Jul; 277(5324):333-8. PubMed ID: 9219684
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Serimbetov Z; Baxter NJ; Cliff MJ; Waltho JP
    Biomol NMR Assign; 2017 Oct; 11(2):251-256. PubMed ID: 28866776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational study of a transition state analog of phosphoryl transfer in the Ras-RasGAP complex: AlF(x) versus MgF3-.
    Grigorenko BL; Nemukhin AV; Cachau RE; Topol IA; Burt SK
    J Mol Model; 2005 Nov; 11(6):503-8. PubMed ID: 16052311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of RhoA-GDP and its functional implications.
    Wei Y; Zhang Y; Derewenda U; Liu X; Minor W; Nakamoto RK; Somlyo AV; Somlyo AP; Derewenda ZS
    Nat Struct Biol; 1997 Sep; 4(9):699-703. PubMed ID: 9302995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the aluminum and beryllium fluoride species which activate transducin. Analysis of the binding and dissociation kinetics.
    Antonny B; Chabre M
    J Biol Chem; 1992 Apr; 267(10):6710-8. PubMed ID: 1551879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Trojan horse transition state analogue generated by MgF3- formation in an enzyme active site.
    Baxter NJ; Olguin LF; Golicnik M; Feng G; Hounslow AM; Bermel W; Blackburn GM; Hollfelder F; Waltho JP; Williams NH
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14732-7. PubMed ID: 16990434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reflections on biocatalysis involving phosphorus.
    Blackburn GM; Bowler MW; Jin Y; Waltho JP
    Biochemistry (Mosc); 2012 Oct; 77(10):1083-96. PubMed ID: 23157289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-frequency 94 GHz ENDOR characterization of the metal binding site in wild-type Ras x GDP and its oncogenic mutant G12V in frozen solution.
    Bennati M; Hertel MM; Fritscher J; Prisner TF; Weiden N; Hofweber R; Spörner M; Horn G; Kalbitzer HR
    Biochemistry; 2006 Jan; 45(1):42-50. PubMed ID: 16388579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.