These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 1192776)

  • 21. Lactate oxidation by three segments of the rabbit proximal tubule.
    Brand PH; Taylor BB
    Proc Soc Exp Biol Med; 1986 Sep; 182(4):454-60. PubMed ID: 3090556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth hormone directly stimulates gluconeogenesis in canine renal proximal tubule.
    Rogers SA; Karl IE; Hammerman MR
    Am J Physiol; 1989 Nov; 257(5 Pt 1):E751-6. PubMed ID: 2596602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline.
    Conjard A; Martin M; Guitton J; Baverel G; Ferrier B
    Biochem J; 2001 Dec; 360(Pt 2):371-7. PubMed ID: 11716765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissociation of gluconeogenesis from fluid and phosphate reabsorption in isolated rabbit proximal tubules.
    Yanagawa N; Nagami GT; Jo O; Uemasu J; Kurokawa K
    Kidney Int; 1984 Jun; 25(6):869-73. PubMed ID: 6471671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glucose and insulin deprivation on differentiation and carbohydrate metabolism of rabbit proximal tubular cells in primary culture.
    Courjault F; Chevalier J; Leroy D; Toutain H
    Biochim Biophys Acta; 1993 Jun; 1177(2):147-59. PubMed ID: 8388735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic adaptation of the renal carbohydrate metabolism. II. Effects of a high carbohydrate diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules.
    García-Salguero L; Lupiánez JA
    Mol Cell Biochem; 1989 Jan; 85(1):91-100. PubMed ID: 2725482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of various aminoglycoside antibiotics on glucose formation in isolated rabbit kidney-cortex tubules.
    Michalik M; Głazewski S; Bryła J
    Pharmacol Res; 1989; 21(4):405-14. PubMed ID: 2771859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary culture of mammalian nephron epithelia: requirements for cell outgrowth and proliferation from defined explanted nephron segments.
    Horster M
    Pflugers Arch; 1979 Nov; 382(3):209-15. PubMed ID: 575410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous metabolism and toxicity of 4-pentenoate along the dog nephron.
    Boulanger Y; Wong H; Noël J; Sénécal J; Fleser A; Gougoux A; Vinay P
    Ren Physiol Biochem; 1993; 16(4):182-202. PubMed ID: 7689241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nephron heterogeneity: gluconeogenesis from pyruvate in rabbit nephron.
    Maleque A; Endou H; Koseki C; Sakai F
    FEBS Lett; 1980 Jul; 116(2):154-6. PubMed ID: 7409143
    [No Abstract]   [Full Text] [Related]  

  • 31. Progressive enzyme changes within anatomically defined segments of rabbit nephron: demonstration with a new technique.
    Cole BR; Boylan JG; Bross TE; Burch HB; Lowry OH
    J Histochem Cytochem; 1988 Mar; 36(3):285-9. PubMed ID: 2830331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of gluconeogenesis in swine kidney proximal tubule cells.
    Ashkar S; Kennedy J; Mendicino J
    Mol Cell Biochem; 1989 Jun; 87(2):105-18. PubMed ID: 2770716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats.
    Guder W; Wiesner W; Stukowski B; Wieland O
    Hoppe Seylers Z Physiol Chem; 1971 Oct; 352(10):1319-28. PubMed ID: 4331491
    [No Abstract]   [Full Text] [Related]  

  • 34. Calcium-dependent effect of gentamicin on glucose formation in isolated rabbit kidney-cortex tubules.
    Michalik M; Biedermann I; Bryła J
    Ren Physiol Biochem; 1990; 13(5):269-74. PubMed ID: 1697088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subcellular sites of insulin hydrolysis in renal proximal tubules.
    Hjelle JT; Oparil S; Peterson DR
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F409-16. PubMed ID: 6372510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Metabolic fate of lactate and pyruvate in isolated human renal tubules].
    Baverel G; Bonnard M; Pellet M
    J Urol Nephrol (Paris); 1978 Dec; 84(12):889-90. PubMed ID: 748578
    [No Abstract]   [Full Text] [Related]  

  • 37. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study.
    Balaban RS; Mandel LJ
    Am J Physiol; 1988 Mar; 254(3 Pt 2):F407-16. PubMed ID: 3348418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose metabolism and the kidney.
    Castellino P; DeFronzo RA
    Semin Nephrol; 1990 Sep; 10(5):458-63. PubMed ID: 2236987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate oxidation by defined single nephron segments of rat kidney.
    Klein KI; Wang MS; Torikai S; Davidson W; Kurokawa K
    Int J Biochem; 1980; 12(1-2):53-4. PubMed ID: 7399038
    [No Abstract]   [Full Text] [Related]  

  • 40. The distribution of colony-forming cells in the kidney.
    Jen YM; Hendry JH
    Cell Prolif; 1993 May; 26(3):263-9. PubMed ID: 8324073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.