BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 11927803)

  • 1. Second generation intramedullary nailing of subtrochanteric femur fractures: a biomechanical study of fracture site motion.
    Roberts CS; Nawab A; Wang M; Voor MJ; Seligson D
    J Orthop Trauma; 2002 Apr; 16(4):231-8. PubMed ID: 11927803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of internal fixation for the treatment of comminuted subtrochanteric femur fractures.
    Tazawa R; Minehara H; Matsuura T; Kawamura T; Sakai R; Yoshida K; Inoue G; Takaso M
    J Orthop Sci; 2021 Mar; 26(2):261-265. PubMed ID: 32245694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixation of segmental subtrochanteric fractures. A biomechanical study.
    Kraemer WJ; Hearn TC; Powell JN; Mahomed N
    Clin Orthop Relat Res; 1996 Nov; (332):71-9. PubMed ID: 8913147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS).
    Wang J; Ma JX; Lu B; Bai HH; Wang Y; Ma XL
    Orthop Traumatol Surg Res; 2020 Feb; 106(1):95-101. PubMed ID: 31345739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of three second-generation reconstruction nails in an unstable subtrochanteric femur fracture model.
    Heiney J; Battula S; Njus G; Ruble C; Vrabec G
    Proc Inst Mech Eng H; 2008 Aug; 222(6):959-66. PubMed ID: 18935812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of locked distal screws in retrograde nailing of osteoporotic distal femur fractures: a laboratory study using cadaver femurs.
    Tejwani NC; Park S; Iesaka K; Kummer F
    J Orthop Trauma; 2005 Jul; 19(6):380-3. PubMed ID: 16003196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subtrochanteric femoral fractures and intramedullary nailing complications: a comparison of two implants.
    Panteli M; Vun JSH; West RM; Howard A; Pountos I; Giannoudis PV
    J Orthop Traumatol; 2022 Jun; 23(1):27. PubMed ID: 35764711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanical study of gap motion in cadaveric femurs using short and long supracondylar nails.
    Sears BR; Ostrum RF; Litsky AS
    J Orthop Trauma; 2004 Jul; 18(6):354-60. PubMed ID: 15213500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Analysis of Retrograde Flexible Intramedullary Nail Constructs in a Simulated Pediatric Femur Fracture Model.
    Bland DC; Black SR; Pierce WA; Wimberly RL; Riccio AI
    J Pediatr Orthop; 2019 Jan; 39(1):22-27. PubMed ID: 28141692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Gamma nail osteosynthesis of per- and subtrochanteric femoral fractures. 4 years experiences and their consequences for further implant development].
    Friedl W; Colombo-Benkmann M; Dockter S; Machens HG; Mieck U
    Chirurg; 1994 Nov; 65(11):953-63. PubMed ID: 7821076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing.
    Ostrum RF; Marcantonio A; Marburger R
    J Orthop Trauma; 2005; 19(10):681-6. PubMed ID: 16314714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The treatment of reverse obliquity intertrochanteric fractures with the intramedullary hip nail.
    Park SY; Yang KH; Yoo JH; Yoon HK; Park HW
    J Trauma; 2008 Oct; 65(4):852-7. PubMed ID: 18849802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Study of Intramedullary Versus Extramedullary Implants for Four Types of Subtrochanteric Femoral Fracture.
    Wang J; Jia H; Ma X; Ma J; Lu B; Bai H; Wang Y
    Orthop Surg; 2022 Aug; 14(8):1884-1891. PubMed ID: 35706129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures.
    Parker MJ; Handoll HH
    Cochrane Database Syst Rev; 2002; (4):CD000093. PubMed ID: 12519535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of gap size, screw configuration, and nail materials in the stability of anterograde reamed intramedullary nail in femoral transverse fractures.
    Gabarre S; Albareda J; Gracia L; Puértolas S; Ibarz E; Herrera A
    Injury; 2017 Nov; 48 Suppl 6():S40-S46. PubMed ID: 29162240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental examination for optimized stabilisation of trochanteric femur fractures, intra- or extramedullary implant localisation and influence of femur neck component profile on cut-out risk].
    Friedl W; Clausen J
    Chirurg; 2001 Nov; 72(11):1344-52. PubMed ID: 11766660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric Finite Element Analysis of Intramedullary Nail Fixation of Proximal Femur Fractures.
    Tucker SM; Wee H; Fox E; Reid JS; Lewis GS
    J Orthop Res; 2019 Nov; 37(11):2358-2366. PubMed ID: 31254411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal location of a single distal interlocking screw in intramedullary nailing of distal third femoral shaft fractures.
    George CJ; Lindsey RW; Noble PC; Alexander JW; Kamaric E
    J Orthop Trauma; 1998 May; 12(4):267-72. PubMed ID: 9619462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical performance of short and long cephalomedullary nail constructs for stabilizing different levels of subtrochanteric fracture.
    Chantarapanich N; Riansuwan K
    Injury; 2022 Feb; 53(2):323-333. PubMed ID: 34969504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative biomechanical analysis of reconstruction and cephalomedullary nails in the treatment of osteoporotic subtrochanteric fractures.
    Yoon YC; Kim JW; Kim TK; Oh CW; Park KH; Lee JH
    Injury; 2024 Jun; 55(6):111512. PubMed ID: 38537396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.