BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11927988)

  • 21. [The different functions of glnB and glnZ from Azospirillum brasilense YU62 in the control of nitrogen fixation].
    Chen S; Guan Y; Ying J; Li Z; Wang J; Li J
    Wei Sheng Wu Xue Bao; 2001 Oct; 41(5):523-9. PubMed ID: 12552797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of the fungicide captan on Azospirillum brasilense Cd in pure culture and associated with Setaria italica].
    Di Ciocco CA; Rodríguez Cáceres E
    Rev Argent Microbiol; 1997; 29(3):152-6. PubMed ID: 9411490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7.
    Lerner A; Castro-Sowinski S; Lerner H; Okon Y; Burdman S
    FEMS Microbiol Lett; 2009 Nov; 300(1):75-82. PubMed ID: 19765087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation in a D-alanine-D-alanine ligase of Azospirillum brasilense Cd results in an overproduction of exopolysaccharides and a decreased tolerance to saline stress.
    Jofré E; Fischer S; Príncipe A; Castro M; Ferrari W; Lagares A; Mori G
    FEMS Microbiol Lett; 2009 Jan; 290(2):236-46. PubMed ID: 19025567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense.
    Zhang Y; Burris RH; Roberts GP
    J Bacteriol; 1992 May; 174(10):3364-9. PubMed ID: 1577701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense.
    Klassen G; de Souza EM; Yates MG; Rigo LU; Inaba J; Pedrosa Fde O
    J Bacteriol; 2001 Nov; 183(22):6710-3. PubMed ID: 11673445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Posttranslational regulatory system for nitrogenase activity in Azospirillum spp.
    Fu HA; Hartmann A; Lowery RG; Fitzmaurice WP; Roberts GP; Burris RH
    J Bacteriol; 1989 Sep; 171(9):4679-85. PubMed ID: 2504694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequencing and analysis of function of the promoter region of draTG genes from Azospirillum brasilense Yu62.
    Ma L; Li J
    Chin J Biotechnol; 1997; 13(4):211-7. PubMed ID: 9631255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osmoregulation in Azospirillum brasilense: glycine betaine transport enhances growth and nitrogen fixation under salt stress.
    Riou N; Le Rudulier D
    J Gen Microbiol; 1990 Aug; 136(8):1455-61. PubMed ID: 22991739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D.
    Mehry A; Akbar M; Giti E
    Pak J Biol Sci; 2008 Jun; 11(12):1541-50. PubMed ID: 18819640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations.
    Pereg Gerk L; Gilchrist K; Kennedy IR
    Appl Environ Microbiol; 2000 May; 66(5):2175-84. PubMed ID: 10788397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain.
    Arsene F; Kaminski PA; Elmerich C
    J Bacteriol; 1996 Aug; 178(16):4830-8. PubMed ID: 8759845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity.
    Liang YY; Arsène F; Elmerich C
    Mol Gen Genet; 1993 Aug; 240(2):188-96. PubMed ID: 8355653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutation in a gene encoding anti-sigma factor in A. brasilense confers tolerance to elevated temperature, antibacterial peptide and PEG-200 via carotenoid synthesis.
    Mishra MN; Thirunavukkarasu N; Sharma IM; Jagnnadham MV; Tripathi AK
    FEMS Microbiol Lett; 2008 Oct; 287(2):221-9. PubMed ID: 18754787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic regulation of nitrogen fixation in Rhodospirillum rubrum.
    Wang H; Norén A
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):160-1. PubMed ID: 16417510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of nifH transcription in Azospirillum brasilense: involvement of NifA and of cis-acting sequences.
    Fancelli S; Fani R; Grifoni A; Mugnai M; Pastorelli R; Bazzicalupo M
    FEMS Microbiol Lett; 1994 Jan; 115(1):57-62. PubMed ID: 8125248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Cloning sequencing and expression pattern, functional analysis of nifA gene in Azospirillum brasilense Yu62].
    Wang J; Chen S; Ma L; Li J
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):655-61. PubMed ID: 12552819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of Azospirillum brasilense Cd to sodium chloride stress.
    Rivarola V; Castro S; Mori G; Jofré E; Fabra A; Garnica R; Balegno H
    Antonie Van Leeuwenhoek; 1998 Apr; 73(3):255-61. PubMed ID: 9801770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria.
    Huergo LF; Merrick M; Pedrosa FO; Chubatsu LS; Araujo LM; Souza EM
    Mol Microbiol; 2007 Dec; 66(6):1523-35. PubMed ID: 18028310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli.
    Araújo LM; Monteiro RA; Souza EM; Steffens MB; Rigo LU; Pedrosa FO; Chubatsu LS
    Res Microbiol; 2004; 155(6):491-5. PubMed ID: 15249067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.