These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11928117)

  • 1. [Coloration of cytologic thick sections containing biomaterials with silver methenamine. Usefulness for scanning electron microscopy].
    Frayssinet P; Gineste L; Giammara B; Hanker JS
    Morphologie; 1998; 82(256):13-5. PubMed ID: 11928117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver methenamine staining for scanning electron microscopy of bone sections containing biomaterials.
    Frayssinet P; Hanker JS; Rouquet N; Primout I; Giammara B
    Biotech Histochem; 1999 Jan; 74(1):10-5. PubMed ID: 10190255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of silver methenamine method for nanoleakage.
    Fernando de Goes M; Montes MA
    J Dent; 2004 Jul; 32(5):391-8. PubMed ID: 15193788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new saw technique improves preparation of bone sections for light and electron microscopy.
    Klein CP; Sauren YM; Modderman WE; van der Waerden JP
    J Appl Biomater; 1994; 5(4):369-73. PubMed ID: 8580545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: the effect of coating thickness.
    Wang BC; Lee TM; Chang E; Yang CY
    J Biomed Mater Res; 1993 Oct; 27(10):1315-27. PubMed ID: 8245046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic acid thiosemicarbazide gelatin methenamine silver (PATSC-GMS) staining for transmission electron microscopy.
    Namimatsu S
    J Submicrosc Cytol Pathol; 1992 Jan; 24(1):19-28. PubMed ID: 1377594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone.
    Sul YT; Johansson CB; Albrektsson T
    Int J Oral Maxillofac Implants; 2002; 17(5):625-34. PubMed ID: 12381062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite.
    Li ZL; Kitsugi T; Yamamuro T; Chang YS; Senaha Y; Takagi H; Nakamura T; Oka M
    J Biomed Mater Res; 1995 Sep; 29(9):1081-8. PubMed ID: 8567706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural study of the A-W GC-bone interface after long-term implantation in rat and human bone.
    Neo M; Nakamura T; Ohtsuki C; Kasai R; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1994 Mar; 28(3):365-72. PubMed ID: 8077251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion of silver cones in bone: a scanning electron microscope and microprobe analysis.
    Zielke DR; Brady JM; del Rio CE
    J Endod; 1975 Nov; 1(11):356-60. PubMed ID: 10697486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ultrastructure of the bone-hydroxyapatite interface in vitro.
    de Bruijn JD; Klein CP; de Groot K; van Blitterswijk CA
    J Biomed Mater Res; 1992 Oct; 26(10):1365-82. PubMed ID: 1331114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site].
    Grizon F; Filmon R; Chappard D; Rebel A; Basle MF
    Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of structure and degradation of nonpolymeric biomaterials implanted in bone using reflected and transmitted light microscopy.
    Frayssinet P; Tourenne F; Primout I; Delga C; Sergent E; Besse C; Conte P; Guilhem A
    Biotech Histochem; 1993 Nov; 68(6):333-41. PubMed ID: 8292657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the ultrastructural study of the implant-bone interface by backscattered electron imaging.
    Wierzchos J; Falcioni T; Kiciak A; Woliński J; Koczorowski R; Chomicki P; Porembska M; Ascaso C
    Micron; 2008 Dec; 39(8):1363-70. PubMed ID: 18337110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations.
    Wie H; Herø H; Solheim T
    Int J Oral Maxillofac Implants; 1998; 13(6):837-44. PubMed ID: 9857595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone attachment to hydroxyapatite coated polymers.
    Boone PS; Zimmerman MC; Gutteling E; Lee CK; Parsons JR; Langrana N
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):183-99. PubMed ID: 2674147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone.
    Neo M; Kotani S; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T; Bando Y
    J Biomed Mater Res; 1992 Nov; 26(11):1419-32. PubMed ID: 1447227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial bone matrix formation at the hydroxyapatite interface in vivo.
    de Bruijn JD; van Blitterswijk CA; Davies JE
    J Biomed Mater Res; 1995 Jan; 29(1):89-99. PubMed ID: 7713963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.