BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11929199)

  • 1. Zinc-deficient rats are insensitive to glucoprivation caused by 2-deoxy-D-glucose.
    Cole AC; Shay NF; O'Brien S; Beverly JL
    Nutr Neurosci; 2002 Feb; 5(1):59-64. PubMed ID: 11929199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food intake patterns are altered during long-term zinc deficiency in rats.
    Rains TM; Hedrick S; Randall AC; Lee RG; Kennedy KJ; Shay NF
    Physiol Behav; 1998 Dec; 65(3):473-8. PubMed ID: 9877413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of food intake and self-selection of macronutrients in rats during short-term deprivation of dietary zinc.
    Reeves PG
    J Nutr Biochem; 2003 Apr; 14(4):232-43. PubMed ID: 12770648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient diets.
    Jing MY; Sun JY; Wang JF
    Biol Trace Elem Res; 2008 Aug; 124(2):144-56. PubMed ID: 18425433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of rats deprived of water to increase food intake during glucoprivation induced by 2-deoxy-D-glucose.
    Watson PJ; Biderman MD
    Pharmacol Biochem Behav; 1982 Nov; 17(5):955-9. PubMed ID: 7178206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macronutrient selection following 2-deoxy-D-glucose and mercaptoacetate administration in rats.
    Singer LK; York DA; Bray GA
    Physiol Behav; 1998 Aug; 65(1):115-21. PubMed ID: 9811373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc deficiency changes preferred macronutrient intake in subpopulations of Sprague-Dawley outbred rats and reduces hepatic pyruvate kinase gene expression.
    Kennedy KJ; Rains TM; Shay NF
    J Nutr; 1998 Jan; 128(1):43-9. PubMed ID: 9430600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin gene expression and serum leptin levels in zinc deficiency: implications for appetite regulation in rats.
    Lee SL; Kwak EH; Kim YH; Choi JY; Kwon ST; Beattie JH; Kwun IS
    J Med Food; 2003; 6(4):281-9. PubMed ID: 14977435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of various carbohydrates on the feeding pattern of rats fed zinc-deficient diets.
    Kubota H; Ohyama T; Horikawa Y; Matsuda K; Fujimoto-Sakata S; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 2003 Aug; 49(4):228-33. PubMed ID: 14598908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graded model of dietary zinc deficiency: effects on growth, insulin-like growth factor-I, and the glucose/insulin axis in weanling rats.
    Hall AG; Kelleher SL; Lönnerdal B; Philipps AF
    J Pediatr Gastroenterol Nutr; 2005 Jul; 41(1):72-80. PubMed ID: 15990634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced food intake in zinc deficient rats is normalized by megestrol acetate but not by insulin-like growth factor-I.
    Browning JD; MacDonald RS; Thornton WH; O'Dell BL
    J Nutr; 1998 Jan; 128(1):136-42. PubMed ID: 9430615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of maltose preference by selection from dextrin, maltose and glucose diets in zinc-deficient rats.
    Horikawa Y; Uehara D; Matsuda K; F Sakata S; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 2008 Jun; 54(3):203-9. PubMed ID: 18635906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc status specifically changes preferences for carbohydrate and protein in rats selecting from separate carbohydrate-, protein-, and fat-containing diets.
    Rains TM; Shay NF
    J Nutr; 1995 Nov; 125(11):2874-9. PubMed ID: 7472669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic branch vagotomy enhances glucoprivic feeding in food-deprived old rats.
    Scharrer E; Del Prete E; Giger R
    Physiol Behav; 1993 Aug; 54(2):259-64. PubMed ID: 8372118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preference for glucose in Zn-deficient rats selecting from glucose and fructose diets.
    Ohyama T; Kubota H; Horikawa Y; Matsuda K; Sakata SF; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 2005 Feb; 51(1):16-21. PubMed ID: 15915663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of low-, medium-, and high-fat diets on 2-deoxy-D-glucose- and mercaptoacetate-induced feeding.
    Singer-Koegler LK; Magluyan P; Ritter S
    Physiol Behav; 1996 Jul; 60(1):321-3. PubMed ID: 8804684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute 2DG-induced glucoprivation or dexamethasone abolishes 2DG-induced glucoregulatory responses to subsequent glucoprivation.
    Sanders NM; Ritter S
    Diabetes; 2001 Dec; 50(12):2831-6. PubMed ID: 11723067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased carbohydrate consumption by rats as a function of 2-deoxy-D-glucose administration.
    Kanarek RB; Marks-Kaufman R; Ruthazer R; Gualtieri L
    Pharmacol Biochem Behav; 1983 Jan; 18(1):47-50. PubMed ID: 6828537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated 2-deoxy-D-glucose-induced glucoprivation attenuates Fos expression and glucoregulatory responses during subsequent glucoprivation.
    Sanders NM; Ritter S
    Diabetes; 2000 Nov; 49(11):1865-74. PubMed ID: 11078453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracerebroventricular 2-DG causes feeding in the absence of other signs of glucoprivation.
    Engeset RM; Ritter RC
    Brain Res; 1980 Nov; 202(1):229-33. PubMed ID: 7427740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.