BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11929812)

  • 1. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.
    Katz-Brull R; Seger D; Rivenson-Segal D; Rushkin E; Degani H
    Cancer Res; 2002 Apr; 62(7):1966-70. PubMed ID: 11929812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells.
    Aboagye EO; Bhujwalla ZM
    Cancer Res; 1999 Jan; 59(1):80-4. PubMed ID: 9892190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells.
    Ting YL; Sherr D; Degani H
    Anticancer Res; 1996; 16(3B):1381-8. PubMed ID: 8694505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models.
    Al-Saffar NM; Troy H; Ramírez de Molina A; Jackson LE; Madhu B; Griffiths JR; Leach MO; Workman P; Lacal JC; Judson IR; Chung YL
    Cancer Res; 2006 Jan; 66(1):427-34. PubMed ID: 16397258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of choline phospholipid metabolism in ovarian tumor progression.
    Iorio E; Mezzanzanica D; Alberti P; Spadaro F; Ramoni C; D'Ascenzo S; Millimaggi D; Pavan A; Dolo V; Canevari S; Podo F
    Cancer Res; 2005 Oct; 65(20):9369-76. PubMed ID: 16230400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method.
    Katz-Brull R; Degani H
    Anticancer Res; 1996; 16(3B):1375-80. PubMed ID: 8694504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study.
    Singer S; Souza K; Thilly WG
    Cancer Res; 1995 Nov; 55(22):5140-5. PubMed ID: 7585561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.
    Sterin M; Cohen JS; Mardor Y; Berman E; Ringel I
    Cancer Res; 2001 Oct; 61(20):7536-43. PubMed ID: 11606391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.
    Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS
    Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies.
    Eliyahu G; Kreizman T; Degani H
    Int J Cancer; 2007 Apr; 120(8):1721-30. PubMed ID: 17236204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors.
    Katz-Brull R; Margalit R; Bendel P; Degani H
    MAGMA; 1998 Aug; 6(1):44-52. PubMed ID: 9794289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance analysis of tumor necrosis factor-induced alterations of phospholipid metabolites and pH in Friend leukemia cell tumors and fibrosarcomas in mice.
    Podo F; Carpinelli G; Di Vito M; Giannini M; Proietti E; Fiers W; Gresser I; Belardelli F
    Cancer Res; 1987 Dec; 47(24 Pt 1):6481-9. PubMed ID: 3677088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation.
    Glunde K; Raman V; Mori N; Bhujwalla ZM
    Cancer Res; 2005 Dec; 65(23):11034-43. PubMed ID: 16322253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of fatty alcohol in MCF-7 breast cancer cells.
    Welsh CJ; Robinson M; Warne TR; Pierce JH; Yeh GC; Phang JM
    Arch Biochem Biophys; 1994 Nov; 315(1):41-7. PubMed ID: 7979403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study.
    Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS
    Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples.
    Morvan D; Demidem A; Papon J; De Latour M; Madelmont JC
    Cancer Res; 2002 Mar; 62(6):1890-7. PubMed ID: 11912170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy.
    Loening NM; Chamberlin AM; Zepeda AG; Gonzalez RG; Cheng LL
    NMR Biomed; 2005 Nov; 18(7):413-20. PubMed ID: 16075415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters.
    Sitter B; Lundgren S; Bathen TF; Halgunset J; Fjosne HE; Gribbestad IS
    NMR Biomed; 2006 Feb; 19(1):30-40. PubMed ID: 16229059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alkyl-lysophospholipids on phosphatidylcholine biosynthesis in leukemic cell lines.
    Vogler WR; Whigham E; Bennett WD; Olson AC
    Exp Hematol; 1985 Aug; 13(7):629-33. PubMed ID: 3861326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.