BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 11929935)

  • 1. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the dorsolateral pontine nucleus in short-term adaptation of the horizontal vestibuloocular reflex.
    Ono S; Das VE; Mustari MJ
    J Neurophysiol; 2003 May; 89(5):2879-85. PubMed ID: 12740419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus.
    Lisberger SG; Pavelko TA; Bronte-Stewart HM; Stone LS
    J Neurophysiol; 1994 Aug; 72(2):954-73. PubMed ID: 7983548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR.
    Rambold H; Churchland A; Selig Y; Jasmin L; Lisberger SG
    J Neurophysiol; 2002 Feb; 87(2):912-24. PubMed ID: 11826056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross axis VOR induced by pursuit training in monkeys: further properties of adaptive responses.
    Fukushima K; Sato T; Fukushima J; Kurkin S
    Arch Ital Biol; 2000 Jan; 138(1):49-62. PubMed ID: 10604033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):928-53. PubMed ID: 7983547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth pursuit disorders.
    Pierrot-Deseilligny C; Gaymard B
    Baillieres Clin Neurol; 1992 Aug; 1(2):435-54. PubMed ID: 1344078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the MST-DLPN pathway in smooth pursuit adaptation.
    Ono S; Mustari MJ
    Prog Brain Res; 2008; 171():161-5. PubMed ID: 18718295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1599-613. PubMed ID: 10980030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraretinal signals in MSTd neurons related to volitional smooth pursuit.
    Ono S; Mustari MJ
    J Neurophysiol; 2006 Nov; 96(5):2819-25. PubMed ID: 16790593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning.
    Blazquez PM; Hirata Y; Highstein SM
    J Neurophysiol; 2006 Mar; 95(3):1812-25. PubMed ID: 16319196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pursuit--vestibular interactions in brain stem neurons during rotation and translation.
    Meng H; Green AM; Dickman JD; Angelaki DE
    J Neurophysiol; 2005 Jun; 93(6):3418-33. PubMed ID: 15647394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive eye movements induced by cross-axis pursuit--vestibular interactions in trained monkeys.
    Fukushima K; Fukushima J; Yamanobe T; Shinmei Y; Kurkin S
    Acta Otolaryngol Suppl; 2001; 545():73-9. PubMed ID: 11677748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to understanding adaptive visual-vestibular interactions in the central nervous system.
    Galiana HL
    J Neurophysiol; 1986 Feb; 55(2):349-74. PubMed ID: 3081692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic organization principles of the VOR: lessons from frogs.
    Straka H; Dieringer N
    Prog Neurobiol; 2004 Jul; 73(4):259-309. PubMed ID: 15261395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of smooth pursuit and the vestibuloocular reflex in three dimensions.
    Misslisch H; Tweed D; Fetter M; Dichgans J; Vilis T
    J Neurophysiol; 1996 Jun; 75(6):2520-32. PubMed ID: 8793761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.