These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11929986)
1. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Fischer NO; McIntosh CM; Simard JM; Rotello VM Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5018-23. PubMed ID: 11929986 [TBL] [Abstract][Full Text] [Related]
2. Reversible regulation of chymotrypsin activity using negatively charged gold nanoparticles featuring malonic acid termini. Simard JM; Szymanski B; Rotello VM Med Chem; 2005 Mar; 1(2):153-7. PubMed ID: 16787310 [TBL] [Abstract][Full Text] [Related]
3. Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors. Fischer NO; Verma A; Goodman CM; Simard JM; Rotello VM J Am Chem Soc; 2003 Nov; 125(44):13387-91. PubMed ID: 14583034 [TBL] [Abstract][Full Text] [Related]
4. Effect of ionic strength on the binding of alpha-chymotrypsin to nanoparticle receptors. Verma A; Simard JM; Rotello VM Langmuir; 2004 May; 20(10):4178-81. PubMed ID: 15969414 [TBL] [Abstract][Full Text] [Related]
5. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. You CC; De M; Han G; Rotello VM J Am Chem Soc; 2005 Sep; 127(37):12873-81. PubMed ID: 16159281 [TBL] [Abstract][Full Text] [Related]
6. Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with alpha-chymotrypsin. You CC; De M; Rotello VM Org Lett; 2005 Dec; 7(25):5685-8. PubMed ID: 16321022 [TBL] [Abstract][Full Text] [Related]
7. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. Hong R; Fischer NO; Verma A; Goodman CM; Emrick T; Rotello VM J Am Chem Soc; 2004 Jan; 126(3):739-43. PubMed ID: 14733547 [TBL] [Abstract][Full Text] [Related]
8. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function. Sandanaraj BS; Vutukuri DR; Simard JM; Klaikherd A; Hong R; Rotello VM; Thayumanavan S J Am Chem Soc; 2005 Aug; 127(30):10693-8. PubMed ID: 16045357 [TBL] [Abstract][Full Text] [Related]
9. Reversible photoregulation of binding of alpha-chymotrypsin to a gold surface. Pearson D; Downard AJ; Muscroft-Taylor A; Abell AD J Am Chem Soc; 2007 Dec; 129(48):14862-3. PubMed ID: 17994751 [TBL] [Abstract][Full Text] [Related]
10. Role of electrostatic interactions in 2,2,2-trifluoroethanol-induced structural changes and aggregation of alpha-chymotrypsin. Rezaei-Ghaleh N; Ebrahim-Habibi A; Moosavi-Movahedi AA; Nemat-Gorgani M Arch Biochem Biophys; 2007 Jan; 457(2):160-9. PubMed ID: 17141725 [TBL] [Abstract][Full Text] [Related]
11. Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. You CC; Agasti SS; De M; Knapp MJ; Rotello VM J Am Chem Soc; 2006 Nov; 128(45):14612-8. PubMed ID: 17090046 [TBL] [Abstract][Full Text] [Related]
12. Radial control of recognition and redox processes with multivalent nanoparticle hosts. Boal AK; Rotello VM J Am Chem Soc; 2002 May; 124(18):5019-24. PubMed ID: 11982366 [TBL] [Abstract][Full Text] [Related]
13. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Han G; Martin CT; Rotello VM Chem Biol Drug Des; 2006 Jan; 67(1):78-82. PubMed ID: 16492152 [TBL] [Abstract][Full Text] [Related]
14. Light-induced inhibition of chymotrypsin using photocleavable monolayers on gold nanoparticles. Fischer NO; Paulini R; Drechsler U; Rotello VM Chem Commun (Camb); 2004 Dec; (24):2866-7. PubMed ID: 15599446 [TBL] [Abstract][Full Text] [Related]
15. Tuning substrate selectivity of a cationic enzyme using cationic polymers. Roy R; Sandanaraj BS; Klaikherd A; Thayumanavan S Langmuir; 2006 Aug; 22(18):7695-700. PubMed ID: 16922552 [TBL] [Abstract][Full Text] [Related]
16. Dynamic structure/function relationships in the alpha-chymotrypsin deactivation process by heat and pH. Lozano P; De Diego T; Iborra JL Eur J Biochem; 1997 Aug; 248(1):80-5. PubMed ID: 9310363 [TBL] [Abstract][Full Text] [Related]
17. Regulation of alpha-chymotrypsin catalysis by ferric porphyrins and cyclodextrins. Kano K; Ishida Y Chem Asian J; 2008 Apr; 3(4):678-86. PubMed ID: 18311746 [TBL] [Abstract][Full Text] [Related]
18. Recognition and stabilization of peptide alpha-helices using templatable nanoparticle receptors. Verma A; Nakade H; Simard JM; Rotello VM J Am Chem Soc; 2004 Sep; 126(35):10806-7. PubMed ID: 15339141 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of gamma-chymotrypsin in complex with 7-hydroxycoumarin. Ghani U; Ng KK; Atta-ur-Rahman ; Choudhary MI; Ullah N; James MN J Mol Biol; 2001 Nov; 314(3):519-25. PubMed ID: 11846564 [TBL] [Abstract][Full Text] [Related]
20. Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. De M; Chou SS; Dravid VP J Am Chem Soc; 2011 Nov; 133(44):17524-7. PubMed ID: 21954932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]