BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 11930017)

  • 21. Binding of cGMP to GAF domains in amphibian rod photoreceptor cGMP phosphodiesterase (PDE). Identification of GAF domains in PDE alphabeta subunits and distinct domains in the PDE gamma subunit involved in stimulation of cGMP binding to GAF domains.
    Yamazaki M; Li N; Bondarenko VA; Yamazaki RK; Baehr W; Yamazaki A
    J Biol Chem; 2002 Oct; 277(43):40675-86. PubMed ID: 12177054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum.
    Yuasa K; Mi-Ichi F; Kobayashi T; Yamanouchi M; Kotera J; Kita K; Omori K
    Biochem J; 2005 Nov; 392(Pt 1):221-9. PubMed ID: 16038615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic nucleotide phosphodiesterases in Drosophila melanogaster.
    Day JP; Dow JA; Houslay MD; Davies SA
    Biochem J; 2005 May; 388(Pt 1):333-42. PubMed ID: 15673286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11.
    Gross-Langenhoff M; Hofbauer K; Weber J; Schultz A; Schultz JE
    J Biol Chem; 2006 Feb; 281(5):2841-6. PubMed ID: 16330539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Phosphodiesterase-Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity.
    Tulsian NK; Sin VJ; Koh HL; Anand GS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34063491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the GAF-B domain from human phosphodiesterase 10A complexed with its ligand, cAMP.
    Handa N; Mizohata E; Kishishita S; Toyama M; Morita S; Uchikubo-Kamo T; Akasaka R; Omori K; Kotera J; Terada T; Shirouzu M; Yokoyama S
    J Biol Chem; 2008 Jul; 283(28):19657-64. PubMed ID: 18477562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphodiesterase inhibition by a gastroprotective agent irsogladine: preferential blockade of cAMP hydrolysis.
    Kyoi T; Oka M; Noda K; Ukai Y
    Life Sci; 2004 Aug; 75(15):1833-42. PubMed ID: 15302227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes.
    Simmons MA; Hartzell HC
    Mol Pharmacol; 1988 Jun; 33(6):664-71. PubMed ID: 2454387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.
    Cheng J; Grande JP
    Exp Biol Med (Maywood); 2007 Jan; 232(1):38-51. PubMed ID: 17202584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors.
    Zhang X; Feng Q; Cote RH
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3060-6. PubMed ID: 16123402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5.
    Cote RH
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S28-33. PubMed ID: 15224133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in purine specificity in tandem GAF chimeras from cyanobacterial cyaB1 adenylate cyclase and rat phosphodiesterase 2.
    Linder JU; Bruder S; Schultz A; Schultz JE
    FEBS J; 2007 Mar; 274(6):1514-23. PubMed ID: 17302738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porcine detrusor cyclic nucleotide phosphodiesterase isoenzymes: characterization and functional effects of various phosphodiesterase inhibitors in vitro.
    Truss MC; Uckert S; Stief CG; Schulz-Knappe P; Hess R; Forssmann WG; Jonas U
    Urology; 1995 May; 45(5):893-901. PubMed ID: 7747383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological and structural characterization of Trypanosoma cruzi phosphodiesterase C and Implications for design of parasite selective inhibitors.
    Wang H; Kunz S; Chen G; Seebeck T; Wan Y; Robinson H; Martinelli S; Ke H
    J Biol Chem; 2012 Apr; 287(15):11788-97. PubMed ID: 22356915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TcrPDEA1, a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi.
    Alonso GD; Schoijet AC; Torres HN; FlawiĆ” MM
    Mol Biochem Parasitol; 2007 Mar; 152(1):72-9. PubMed ID: 17222469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic organization of the human phosphodiesterase PDE11A gene. Evolutionary relatedness with other PDEs containing GAF domains.
    Yuasa K; Kanoh Y; Okumura K; Omori K
    Eur J Biochem; 2001 Jan; 268(1):168-78. PubMed ID: 11121118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and biochemical aspects of tandem GAF domains.
    Schultz JE
    Handb Exp Pharmacol; 2009; (191):93-109. PubMed ID: 19089327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha.
    Hayashida Y; Yamamoto C; Takahashi F; Shibata A; Kasahara M
    J Plant Res; 2022 Jan; 135(1):137-144. PubMed ID: 34779957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3).
    He R; Komas N; Ekholm D; Murata T; Taira M; Hockman S; Degerman E; Manganiello VC
    Cell Biochem Biophys; 1998; 29(1-2):89-111. PubMed ID: 9631240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.