These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 11930952)
1. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. Marquenie D; Lammertyn J; Geeraerd AH; Soontjens C; Van Impe JF; Nicolaï BM; Michiels CW Int J Food Microbiol; 2002 Mar; 74(1-2):27-35. PubMed ID: 11930952 [TBL] [Abstract][Full Text] [Related]
2. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Marquenie D; Geeraerd AH; Lammertyn J; Soontjens C; Van Impe JF; Michiels CW; Nicolaï BM Int J Food Microbiol; 2003 Aug; 85(1-2):185-96. PubMed ID: 12810282 [TBL] [Abstract][Full Text] [Related]
3. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. Marquenie D; Michiels CW; Geeraerd AH; Schenk A; Soontjen C; Van Impe JF; Nicolaï BM Int J Food Microbiol; 2002 Mar; 73(2-3):187-96. PubMed ID: 11934026 [TBL] [Abstract][Full Text] [Related]
4. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries. Janisiewicz WJ; Takeda F; Glenn DM; Camp MJ; Jurick WM Phytopathology; 2016 Apr; 106(4):386-94. PubMed ID: 26714103 [TBL] [Abstract][Full Text] [Related]
5. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. Villa-Rojas R; Sosa-Morales ME; López-Malo A; Tang J Int J Food Microbiol; 2012 Apr; 155(3):269-72. PubMed ID: 22445202 [TBL] [Abstract][Full Text] [Related]
6. Postharvest Control of Botrytis cinerea and Monilinia fructigena in Apples by Gamma Irradiation Combined with Fumigation. Cheon W; Kim YS; Balaraju K; Kim BS; Lee BH; Jeon Y J Food Prot; 2016 Aug; 79(8):1410-7. PubMed ID: 27497129 [TBL] [Abstract][Full Text] [Related]
7. Effects of ozone treatment on Botrytis cinerea and Sclerotinia sclerotiorum in relation to horticultural product quality. Sharpe D; Fan L; McRae K; Walker B; MacKay R; Doucette C J Food Sci; 2009 Aug; 74(6):M250-7. PubMed ID: 19723209 [TBL] [Abstract][Full Text] [Related]
8. Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. Romero Bernal AR; Contigiani EV; González HHL; Alzamora SM; Gómez PL; Raffellini S Int J Food Microbiol; 2019 Nov; 309():108311. PubMed ID: 31499266 [TBL] [Abstract][Full Text] [Related]
9. Effects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. Zhou D; Wang Z; Tu S; Chen S; Peng J; Tu K J Appl Microbiol; 2019 Jul; 127(1):175-185. PubMed ID: 30980449 [TBL] [Abstract][Full Text] [Related]
10. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth. Zhao W; Wisniewski M; Wang W; Liu J; Liu Y World J Microbiol Biotechnol; 2014 Mar; 30(3):951-7. PubMed ID: 24101365 [TBL] [Abstract][Full Text] [Related]
11. Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches. Garcia-Benitez C; Melgarejo P; De Cal A Int J Food Microbiol; 2017 Jan; 241():117-122. PubMed ID: 27768931 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo [corrected] activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Amiri A; Dugas R; Pichot AL; Bompeix G Int J Food Microbiol; 2008 Aug; 126(1-2):13-9. PubMed ID: 18554737 [TBL] [Abstract][Full Text] [Related]
13. Microbial interaction between Salmonella enterica and main postharvest fungal pathogens on strawberry fruit. Ortiz-Solà J; Valero A; Viñas I; Colás-Medà P; Abadias M Int J Food Microbiol; 2020 May; 320():108489. PubMed ID: 31954976 [TBL] [Abstract][Full Text] [Related]
14. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits. Amiri A; Holb IJ; Schnabel G Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034 [TBL] [Abstract][Full Text] [Related]
15. Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Edwards SG; Seddon B Lett Appl Microbiol; 2001 Feb; 32(2):63-6. PubMed ID: 11169044 [TBL] [Abstract][Full Text] [Related]
16. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. Song J; Hildebrand PD; Fan L; Forney CF; Renderos WE; Campbell-Palmer L; Doucette C J Food Sci; 2007 May; 72(4):M108-12. PubMed ID: 17995777 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Germicidal UV-C Light for Suppression of Grape Powdery Mildew and Botrytis Bunch Rot in Western Oregon. Wong AT; Gadoury DM; Mahaffee WF Plant Dis; 2024 Sep; 108(9):2894-2905. PubMed ID: 38831592 [TBL] [Abstract][Full Text] [Related]
18. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Nierop Groot M; Abee T; van Bokhorst-van de Veen H Food Microbiol; 2019 Aug; 81():108-114. PubMed ID: 30910081 [TBL] [Abstract][Full Text] [Related]
20. Growth and aggressiveness factors affecting Monilinia spp. survival peaches. Villarino M; Melgarejo P; De Cal A Int J Food Microbiol; 2016 Jun; 227():6-12. PubMed ID: 27043383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]