These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11930960)

  • 1. Implementation of a compact, four-stage, scalable optical interconnect for photonic backplane applications.
    Lacroix F; Bernier E; Ayliffe MH; Tooley FA; Plant DV; Kirk AG
    Appl Opt; 2002 Mar; 41(8):1541-55. PubMed ID: 11930960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an optical interconnect for photonic backplane applications.
    Robertson B
    Appl Opt; 1998 May; 37(14):2974-84. PubMed ID: 18273244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator.
    Liu Y; Robertson B; Boisset GC; Ayliffe MH; Iyer R; Plant DV
    Appl Opt; 1998 May; 37(14):2895-914. PubMed ID: 18273236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, implementation, and characterization of an optical power supply spot-array generator for a four-stage free-space optical backplane.
    Iyer R; Liu YS; Boisset GC; Goodwill DJ; Ayliffe MH; Robertson B; Robertson WM; Kabal D; Lacroix F; Plant DV
    Appl Opt; 1997 Dec; 36(35):9230-42. PubMed ID: 18264482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications.
    Kirk AG; Plant DV; Szymanski TH; Vranesic ZG; Tooley FA; Rolston DR; Ayliffe MH; Lacroix FK; Robertson B; Bernier E; Brosseau DF
    Appl Opt; 2003 May; 42(14):2465-81. PubMed ID: 12749558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a microchannel optical interconnect for optical backplanes.
    Liu Y; Robertson B; Plant DV; Hinton HS; Robertson WM
    Appl Opt; 1997 May; 36(14):3127-41. PubMed ID: 18253319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows.
    Rolston DR; Robertson B; Hinton HS; Plant DV
    Appl Opt; 1996 Mar; 35(8):1220-33. PubMed ID: 21085235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-space parallel multichip interconnection system.
    Zheng X; Marchand PJ; Huang D; Esener SC
    Appl Opt; 2000 Jul; 39(20):3516-24. PubMed ID: 18349922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package.
    Zheng X; Marchand PJ; Huang D; Kibar O; Ozkan NS; Esener SC
    Appl Opt; 1999 Sep; 38(26):5631-40. PubMed ID: 18324074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks.
    Li G; Huang D; Yuceturk E; Marchand PJ; Esener SC; Ozguz VH; Liu Y
    Appl Opt; 2002 Jan; 41(2):348-60. PubMed ID: 11899274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanics for a four-stage hybrid-self-electro-optic-device-based free-space optical backplane.
    Boisset GC; Ayliffe MH; Robertson B; Iyer R; Liu YS; Plant DV; Goodwill DJ; Kabal D; Pavlasek D
    Appl Opt; 1997 Oct; 36(29):7341-58. PubMed ID: 18264242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain-size considerations for optoelectronic multistage interconnection networks.
    Krishnamoorthy AV; Marchand PJ; Kiamilev FE; Esener SC
    Appl Opt; 1992 Sep; 31(26):5480-507. PubMed ID: 20733733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-programmable smart-pixel arrays: design, VLSI implementation, and applications.
    Sherif SS; Griebel SK; Au A; Hui D; Szymanski TH; Hinton HS
    Appl Opt; 1999 Feb; 38(5):838-46. PubMed ID: 18305683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design methods for space-variant optical interconnections to achieve optimum power throughput.
    Zaleta D; Larsson M; Daschner W; Lee SH
    Appl Opt; 1995 May; 34(14):2436-47. PubMed ID: 21052378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic modules for free-space optical interconnects.
    Neilson DT; Schenfeld E
    Appl Opt; 1998 May; 37(14):2944-52. PubMed ID: 18273240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CWDM based HDMI interconnect incorporating passively aligned POF linked optical subassembly modules.
    Lee HS; Lee SS; Son YS
    Opt Express; 2011 Aug; 19(16):15380-7. PubMed ID: 21934900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, implementation, and characterization of a folded spot-array generator for a modulator-based free-space optical interconnect.
    Thomas-Dupuis F; Châteauneuf M; Kirk AG
    Appl Opt; 2003 Sep; 42(27):5399-406. PubMed ID: 14526826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of free-space and guided-wave optical interconnects for angularly multiplexed multiwavelength holographic memory.
    Sun DG; Lee R; Chen RT
    Appl Opt; 1997 Nov; 36(32):8329-35. PubMed ID: 18264374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tolerance of optical interconnections to misalignment.
    Neilson DT
    Appl Opt; 1999 Apr; 38(11):2282-90. PubMed ID: 18319792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical design of a 1024-channel free-space sorting demonstrator.
    Neilson DT; Prince SM; Baillie DA; Tooley FA
    Appl Opt; 1997 Dec; 36(35):9243-52. PubMed ID: 18264483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.