These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 11930997)
1. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [TBL] [Abstract][Full Text] [Related]
2. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [TBL] [Abstract][Full Text] [Related]
3. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
4. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
5. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK; Coward-Kelly G Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
7. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
8. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
9. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
10. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Bajwa PK; Shireen T; D'Aoust F; Pinel D; Martin VJ; Trevors JT; Lee H Biotechnol Bioeng; 2009 Dec; 104(5):892-900. PubMed ID: 19557723 [TBL] [Abstract][Full Text] [Related]
11. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
12. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
13. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Rodrigues RC; Lu C; Lin B; Jeffries TW Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752 [TBL] [Abstract][Full Text] [Related]
14. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
15. The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Agbogbo FK; Coward-Kelly G; Torry-Smith M; Wenger K; Jeffries TW Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):653-62. PubMed ID: 18478423 [TBL] [Abstract][Full Text] [Related]
16. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585 [TBL] [Abstract][Full Text] [Related]
17. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. Ryabova OB; Chmil OM; Sibirny AA FEMS Yeast Res; 2003 Nov; 4(2):157-64. PubMed ID: 14613880 [TBL] [Abstract][Full Text] [Related]
18. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Shi NQ; Davis B; Sherman F; Cruz J; Jeffries TW Yeast; 1999 Aug; 15(11):1021-30. PubMed ID: 10455226 [TBL] [Abstract][Full Text] [Related]
19. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
20. Xylitol production by a Pichia stipitis D-xylulokinase mutant. Jin YS; Cruz J; Jeffries TW Appl Microbiol Biotechnol; 2005 Jul; 68(1):42-5. PubMed ID: 15635458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]