BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 11931308)

  • 1. Modeling of the human middle ear using the finite-element method.
    Koike T; Wada H; Kobayashi T
    J Acoust Soc Am; 2002 Mar; 111(3):1306-17. PubMed ID: 11931308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
    Gentil F; Parente M; Martins P; Garbe C; Jorge RN; Ferreira A; Tavares JM
    Proc Inst Mech Eng H; 2011 Jan; 225(1):68-76. PubMed ID: 21381489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of dynamic behavior of human middle ear using a finite-element method.
    Wada H; Metoki T; Kobayashi T
    J Acoust Soc Am; 1992 Dec; 92(6):3157-68. PubMed ID: 1474230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear.
    Gentil F; Parente M; Martins P; Garbe C; Paço J; Ferreira AJ; Tavares JM; Jorge RN
    Comput Methods Biomech Biomed Engin; 2013 Apr; 16(4):392-402. PubMed ID: 22260089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear.
    Muyshondt PGG; Aerts P; Dirckx JJJ
    Hear Res; 2019 Jul; 378():13-22. PubMed ID: 30482533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of components of the human middle ear and simulation of their dynamic behaviour.
    Beer HJ; Bornitz M; Hardtke HJ; Schmidt R; Hofmann G; Vogel U; Zahnert T; Hüttenbrink KB
    Audiol Neurootol; 1999; 4(3-4):156-62. PubMed ID: 10187924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
    Xie P; Peng Y; Hu J; Yi S
    Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Computerized 3-D model to study biomechanics of the middle ear using the finite element method].
    Gil-Carcedo E; Pérez López B; Vallejo LA; Gil-Carcedo LM; Montoya F
    Acta Otorrinolaringol Esp; 2002 Oct; 53(8):527-37. PubMed ID: 12530193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear.
    Volandri G; Di Puccio F; Forte P; Manetti S
    Med Eng Phys; 2012 Nov; 34(9):1339-55. PubMed ID: 22472525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles.
    Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH
    Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system.
    Garcia-Gonzalez A; Castro-Egler C; Gonzalez-Herrera A
    Biomed Eng Online; 2016 Mar; 15():33. PubMed ID: 27029189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Middle-ear dynamics before and after ossicular replacement.
    Ferris P; Prendergast PJ
    J Biomech; 2000 May; 33(5):581-90. PubMed ID: 10708779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibro-acoustic modelling of the outer and middle ear using the finite-element method.
    Prendergast PJ; Ferris P; Rice HJ; Blayney AW
    Audiol Neurootol; 1999; 4(3-4):185-91. PubMed ID: 10187928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency finite-element modeling of the gerbil middle ear.
    Elkhouri N; Liu H; Funnell WR
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.