These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11931321)

  • 1. Ultrasonic wave speed measurement using the time-delay profile of rf-backscattered signals: simulation and experimental results.
    Pereira FR; Machado JC; Pereira WC
    J Acoust Soc Am; 2002 Mar; 111(3):1445-53. PubMed ID: 11931321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic wave speed measurement using the time-delay profile of rf-backscattered signals.
    Pereira FR; Pereira WC; Machado JC
    Ultrasonics; 2000 Mar; 38(1-8):708-10. PubMed ID: 10829757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial phantom study on estimation of speed of sound in medium using coherence among received echo signals.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2019 Jul; 46(3):297-307. PubMed ID: 30848399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrasonic theoretical and experimental approach to determine thickness and wave speed in layered media.
    de Sousa AV; Pereira WC; Machado JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):386-93. PubMed ID: 17328335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-contact sound speed measurement by optical probing of beam deflection due to sound wave.
    Jung SS; Kim YT; Pu YC; Kim MG; Kim HC
    Ultrasonics; 2006 Jan; 44(1):12-6. PubMed ID: 16122774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity.
    Svilainis L; Chaziachmetovas A; Kaskonas P; Gomez Alvarez-Arenas TE
    Ultrasonics; 2023 Aug; 133():107025. PubMed ID: 37159982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position and time-delay calibration of transducer elements in a sparse array for underwater ultrasound imaging.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1458-67. PubMed ID: 16921898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of an angular spectrum approach for pulsed ultrasound fields.
    Du Y; Jensen H; Jensen JA
    Ultrasonics; 2013 Aug; 53(6):1185-91. PubMed ID: 23561393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An absolute instrument for determination of the speed of sound in water.
    Li Z; Zhu J; Li T; Zhang B
    Rev Sci Instrum; 2016 May; 87(5):055107. PubMed ID: 27250470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for direct localized sound speed estimates using registered virtual detectors.
    Byram BC; Trahey GE; Jensen JA
    Ultrason Imaging; 2012 Jul; 34(3):159-80. PubMed ID: 22972913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-frequency ultrasonic imaging by transmitting pulsed waves of two frequencies.
    Yoshizumi N; Saito S; Koyama D; Nakamura K; Ohya A; Akiyama I
    J Med Ultrason (2001); 2009 Jun; 36(2):53-60. PubMed ID: 27277084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear wave arrival time estimates correlate with local speckle pattern.
    Mcaleavey SA; Osapoetra LO; Langdon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2054-67. PubMed ID: 26670847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient sound speed estimation method to enhance image resolution in ultrasound imaging.
    Cho MH; Kang LH; Kim JS; Lee SY
    Ultrasonics; 2009 Dec; 49(8):774-8. PubMed ID: 19635626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System for determination of ultrasonic wave speeds and their temperature dependence in liquids and in vitro tissues.
    Yost WT; Macias BR; Cao P; Hargens AR; Ueno T
    J Acoust Soc Am; 2005 Feb; 117(2):646-52. PubMed ID: 15759685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.