These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497 [TBL] [Abstract][Full Text] [Related]
4. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496 [TBL] [Abstract][Full Text] [Related]
6. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies. Mason AC; Forrest TG; Hoy RR J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432 [TBL] [Abstract][Full Text] [Related]
7. Evolution of a Communication System by Sensory Exploitation of Startle Behavior. Ter Hofstede HM; Schöneich S; Robillard T; Hedwig B Curr Biol; 2015 Dec; 25(24):3245-52. PubMed ID: 26687622 [TBL] [Abstract][Full Text] [Related]
8. Low-frequency tone pips elicit exaggerated startle reflexes in C57BL/6J mice with hearing loss. Ison JR; Allen PD J Assoc Res Otolaryngol; 2003 Dec; 4(4):495-504. PubMed ID: 12784135 [TBL] [Abstract][Full Text] [Related]
13. Habituation of the ultrasound-induced acoustic startle response in flying crickets. May ML; Hoy RR J Exp Biol; 1991 Sep; 159():489-99. PubMed ID: 1940771 [TBL] [Abstract][Full Text] [Related]
14. Neural coding of sound frequency by cricket auditory receptors. Imaizumi K; Pollack GS J Neurosci; 1999 Feb; 19(4):1508-16. PubMed ID: 9952426 [TBL] [Abstract][Full Text] [Related]
15. The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). Faure PA; Hoy RR J Comp Physiol A; 2000 Feb; 186(2):129-42. PubMed ID: 10707311 [TBL] [Abstract][Full Text] [Related]
16. Response growth using a low-frequency suppressor. DiGiovanni JJ; Nair P Hear Res; 2007 Dec; 234(1-2):15-20. PubMed ID: 17923348 [TBL] [Abstract][Full Text] [Related]
17. Effects of relative and absolute frequency in the spectral weighting of loudness. Joshi SN; Wróblewski M; Schmid KK; Jesteadt W J Acoust Soc Am; 2016 Jan; 139(1):373-83. PubMed ID: 26827032 [TBL] [Abstract][Full Text] [Related]
18. Startle-inducing acoustic stimuli evoke ultrasonic vocalization in the rat. Kaltwasser MT Physiol Behav; 1990 Jul; 48(1):13-7. PubMed ID: 2236259 [TBL] [Abstract][Full Text] [Related]
19. Calling song signals and temporal preference functions in the cricket Teleogryllus leo. Rothbart MM; Hennig RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Nov; 198(11):817-25. PubMed ID: 22945775 [TBL] [Abstract][Full Text] [Related]
20. Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species. Pollack GS; Martins R J Exp Biol; 2007 Sep; 210(Pt 18):3160-4. PubMed ID: 17766292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]