BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11931544)

  • 1. Sensory transduction to the flagellar motor of Sinorhizobium meliloti.
    Scharf B; Schmitt R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):183-6. PubMed ID: 11931544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti.
    Sourjik V; Schmitt R
    Mol Microbiol; 1996 Nov; 22(3):427-36. PubMed ID: 8939427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti.
    Sourjik V; Schmitt R
    Biochemistry; 1998 Feb; 37(8):2327-35. PubMed ID: 9485379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
    Attmannspacher U; Scharf B; Schmitt R
    Mol Microbiol; 2005 May; 56(3):708-18. PubMed ID: 15819626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti.
    Eggenhofer E; Haslbeck M; Scharf B
    Mol Microbiol; 2004 May; 52(3):701-12. PubMed ID: 15101977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of CheY2 and CheY2-P with the cognate CheA kinase in the chemosensory-signalling chain of Sinorhizobium meliloti.
    Riepl H; Maurer T; Kalbitzer HR; Meier VM; Haslbeck M; Schmitt R; Scharf B
    Mol Microbiol; 2008 Sep; 69(6):1373-84. PubMed ID: 18573176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti.
    Platzer J; Sterr W; Hausmann M; Schmitt R
    J Bacteriol; 1997 Oct; 179(20):6391-9. PubMed ID: 9335288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MotD of Sinorhizobium meliloti and related alpha-proteobacteria is the flagellar-hook-length regulator and therefore reassigned as FliK.
    Eggenhofer E; Rachel R; Haslbeck M; Scharf B
    J Bacteriol; 2006 Mar; 188(6):2144-53. PubMed ID: 16513744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.
    Zatakia HM; Arapov TD; Meier VM; Scharf BE
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29263102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Stoichiometry of Chemotaxis Proteins in
    Arapov TD; Saldaña RC; Sebastian AL; Ray WK; Helm RF; Scharf BE
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32393521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A LuxR family regulator, ExpR regulates the expression of motC operon from Sinorhizobium meliloti].
    Luo L; Liu FH; Zhu JB; Yu GQ
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):474-7. PubMed ID: 16933625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structures of the inactive and BeF3-activated response regulator CheY2.
    Riepl H; Scharf B; Schmitt R; Kalbitzer HR; Maurer T
    J Mol Biol; 2004 Apr; 338(2):287-97. PubMed ID: 15066432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinorhizobium meliloti CheA complexed with CheS exhibits enhanced binding to CheY1, resulting in accelerated CheY1 dephosphorylation.
    Dogra G; Purschke FG; Wagner V; Haslbeck M; Kriehuber T; Hughes JG; Van Tassell ML; Gilbert C; Niemeyer M; Ray WK; Helm RF; Scharf BE
    J Bacteriol; 2012 Mar; 194(5):1075-87. PubMed ID: 22194454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.
    Meier VM; Muschler P; Scharf BE
    J Bacteriol; 2007 Mar; 189(5):1816-26. PubMed ID: 17189365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression.
    Hoang HH; Becker A; González JE
    J Bacteriol; 2004 Aug; 186(16):5460-72. PubMed ID: 15292148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azorhizobium caulinodans Chemotaxis Is Controlled by an Unusual Phosphorelay Network.
    Kennedy EN; Barr SA; Liu X; Vass LR; Liu Y; Xie Z; Bourret RB
    J Bacteriol; 2022 Feb; 204(2):e0052721. PubMed ID: 34843377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti.
    Hoang HH; Gurich N; González JE
    J Bacteriol; 2008 Feb; 190(3):861-71. PubMed ID: 18024512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.
    Kojima M; Kubo R; Yakushi T; Homma M; Kawagishi I
    Mol Microbiol; 2007 Apr; 64(1):57-67. PubMed ID: 17376072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex flagellar torque generator of Pseudomonas aeruginosa.
    Doyle TB; Hawkins AC; McCarter LL
    J Bacteriol; 2004 Oct; 186(19):6341-50. PubMed ID: 15375113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft genome sequence of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis.
    Wibberg D; Blom J; Rückert C; Winkler A; Albersmeier A; Pühler A; Schlüter A; Scharf BE
    J Biotechnol; 2013 Dec; 168(4):731-3. PubMed ID: 24184089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.