These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 11931563)
1. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563 [TBL] [Abstract][Full Text] [Related]
2. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218 [TBL] [Abstract][Full Text] [Related]
3. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. Jankovic I; Egeter O; Brückner R J Bacteriol; 2001 Jan; 183(2):580-6. PubMed ID: 11133951 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Galinier A; Deutscher J; Martin-Verstraete I J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552 [TBL] [Abstract][Full Text] [Related]
6. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460 [TBL] [Abstract][Full Text] [Related]
9. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Egeter O; Brückner R Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037 [TBL] [Abstract][Full Text] [Related]
10. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. Faires N; Tobisch S; Bachem S; Martin-Verstraete I; Hecker M; Stülke J J Mol Microbiol Biotechnol; 1999 Aug; 1(1):141-8. PubMed ID: 10941796 [TBL] [Abstract][Full Text] [Related]
12. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
13. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Deutscher J; Küster E; Bergstedt U; Charrier V; Hillen W Mol Microbiol; 1995 Mar; 15(6):1049-53. PubMed ID: 7623661 [TBL] [Abstract][Full Text] [Related]
14. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. Schumacher MA; Seidel G; Hillen W; Brennan RG J Mol Biol; 2007 May; 368(4):1042-50. PubMed ID: 17376479 [TBL] [Abstract][Full Text] [Related]
15. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon E; Servant P; Poncet S; Deutscher J Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549 [TBL] [Abstract][Full Text] [Related]
16. Quantification of the influence of HPrSer46P on CcpA-cre interaction. Aung-Hilbrich LM; Seidel G; Wagner A; Hillen W J Mol Biol; 2002 May; 319(1):77-85. PubMed ID: 12051938 [TBL] [Abstract][Full Text] [Related]
17. Catabolite repression of the citST two-component system in Bacillus subtilis. Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348 [TBL] [Abstract][Full Text] [Related]
18. [Knockout of the hprK gene in B. subtilis CcpA mutant and its influence on riboflavin fermentation]. Zhang F; Song H; Ban R Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):534-8. PubMed ID: 16894883 [TBL] [Abstract][Full Text] [Related]
19. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
20. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]