These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 11931563)
21. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. Mertins S; Joseph B; Goetz M; Ecke R; Seidel G; Sprehe M; Hillen W; Goebel W; Müller-Altrock S J Bacteriol; 2007 Jan; 189(2):473-90. PubMed ID: 17085572 [TBL] [Abstract][Full Text] [Related]
23. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
24. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Schumacher MA; Allen GS; Diel M; Seidel G; Hillen W; Brennan RG Cell; 2004 Sep; 118(6):731-41. PubMed ID: 15369672 [TBL] [Abstract][Full Text] [Related]
25. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis. Seidel G; Diel M; Fuchsbauer N; Hillen W FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105 [TBL] [Abstract][Full Text] [Related]
26. Characterization of an HPr kinase mutant of Staphylococcus xylosus. Huynh PL; Jankovic I; Schnell NF; Brückner R J Bacteriol; 2000 Apr; 182(7):1895-902. PubMed ID: 10714994 [TBL] [Abstract][Full Text] [Related]
27. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. Iyer R; Baliga NS; Camilli A J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938 [TBL] [Abstract][Full Text] [Related]
28. Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Lopez de Felipe F; Gaudu P Appl Microbiol Biotechnol; 2009 Apr; 82(6):1115-22. PubMed ID: 19214497 [TBL] [Abstract][Full Text] [Related]
29. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. Singh KD; Schmalisch MH; Stülke J; Görke B J Bacteriol; 2008 Nov; 190(21):7275-84. PubMed ID: 18757537 [TBL] [Abstract][Full Text] [Related]
30. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. Jones BE; Dossonnet V; Küster E; Hillen W; Deutscher J; Klevit RE J Biol Chem; 1997 Oct; 272(42):26530-5. PubMed ID: 9334231 [TBL] [Abstract][Full Text] [Related]
32. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Muscariello L; Marasco R; De Felice M; Sacco M Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700 [TBL] [Abstract][Full Text] [Related]
33. Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. Ujiie H; Matsutani T; Tomatsu H; Fujihara A; Ushida C; Miwa Y; Fujita Y; Himeno H; Muto A J Biochem; 2009 Jan; 145(1):59-66. PubMed ID: 18977770 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
35. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Asanuma N; Yoshii T; Hino T Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406 [TBL] [Abstract][Full Text] [Related]
36. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI. Wagner A; Küster-Schöck E; Hillen W J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936 [TBL] [Abstract][Full Text] [Related]
37. Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC. Singh KD; Halbedel S; Görke B; Stülke J J Mol Microbiol Biotechnol; 2007; 13(1-3):165-71. PubMed ID: 17693724 [TBL] [Abstract][Full Text] [Related]
38. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306 [TBL] [Abstract][Full Text] [Related]
39. Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA. Horstmann N; Seidel G; Aung-Hilbrich LM; Hillen W J Biol Chem; 2007 Jan; 282(2):1175-82. PubMed ID: 17085448 [TBL] [Abstract][Full Text] [Related]
40. Loss of penicillin tolerance by inactivating the carbon catabolite repression determinant CcpA in Streptococcus gordonii. Bizzini A; Entenza JM; Moreillon P J Antimicrob Chemother; 2007 Apr; 59(4):607-15. PubMed ID: 17327292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]