BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 11931659)

  • 41. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase.
    Achari A; Somers DO; Champness JN; Bryant PK; Rosemond J; Stammers DK
    Nat Struct Biol; 1997 Jun; 4(6):490-7. PubMed ID: 9187658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Examination of intrinsic sulfonamide resistance in Bacillus anthracis: a novel assay for dihydropteroate synthase.
    Valderas MW; Andi B; Barrow WW; Cook PF
    Biochim Biophys Acta; 2008 May; 1780(5):848-53. PubMed ID: 18342015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: Transition state analogs for high affinity binding.
    Shi G; Shaw GX; Zhu F; Tarasov SG; Ji X
    Bioorg Med Chem; 2021 Jan; 29():115847. PubMed ID: 33199204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The hydroxymethyldihydropterin pyrophosphokinase domain of the multifunctional folic acid synthesis Fas protein of Pneumocystis carinii expressed as an independent enzyme in Escherichia coli: refolding and characterization of the recombinant enzyme.
    Ballantine SP; Volpe F; Delves CJ
    Protein Expr Purif; 1994 Aug; 5(4):371-8. PubMed ID: 7950384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dihydropteroate synthase from Streptococcus pneumoniae: characterization of substrate binding order and sulfonamide inhibition.
    Vinnicombe HG; Derrick JP
    Biochem Biophys Res Commun; 1999 May; 258(3):752-7. PubMed ID: 10329458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic roles of arginine residues 82 and 92 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: site-directed mutagenesis and biochemical studies.
    Li Y; Wu Y; Blaszczyk J; Ji X; Yan H
    Biochemistry; 2003 Feb; 42(6):1581-8. PubMed ID: 12578371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hamiltonian replica exchange method study of Escherichia coli and Yersinia pestis HPPK.
    Su L; Cukier RI
    J Phys Chem B; 2009 Dec; 113(50):16197-208. PubMed ID: 19924845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a novel bifunctional dihydropteroate synthase/dihydropteroate reductase enzyme from Helicobacter pylori.
    Levin I; Mevarech M; Palfey BA
    J Bacteriol; 2007 Jun; 189(11):4062-9. PubMed ID: 17416665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring the chemical space around 8-mercaptoguanine as a route to new inhibitors of the folate biosynthesis enzyme HPPK.
    Chhabra S; Barlow N; Dolezal O; Hattarki MK; Newman J; Peat TS; Graham B; Swarbrick JD
    PLoS One; 2013; 8(4):e59535. PubMed ID: 23565155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea.
    Levin I; Giladi M; Altman-Price N; Ortenberg R; Mevarech M
    Mol Microbiol; 2004 Dec; 54(5):1307-18. PubMed ID: 15554970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydroxymethyldihydropterin pyrophosphokinase from Plasmodium falciparum complements a folK-knockout mutant in E. coli when expressed as a separate polypeptide detached from dihydropteroate synthase.
    Jönsson M; Swedberg G
    Mol Biochem Parasitol; 2005 Mar; 140(1):123-5. PubMed ID: 15694494
    [No Abstract]   [Full Text] [Related]  

  • 52. Essential roles of a dynamic loop in the catalysis of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.
    Blaszczyk J; Li Y; Wu Y; Shi G; Ji X; Yan H
    Biochemistry; 2004 Feb; 43(6):1469-77. PubMed ID: 14769023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular motions and conformational changes of HPPK.
    Keskin O; Ji X; Blaszcyk J; Covell DG
    Proteins; 2002 Nov; 49(2):191-205. PubMed ID: 12211000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elucidation of sulfadoxine resistance with structural models of the bifunctional Plasmodium falciparum dihydropterin pyrophosphokinase-dihydropteroate synthase.
    de Beer TA; Louw AI; Joubert F
    Bioorg Med Chem; 2006 Jul; 14(13):4433-43. PubMed ID: 16517168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bisubstrate analog inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: new lead exhibits a distinct binding mode.
    Shi G; Shaw G; Li Y; Wu Y; Yan H; Ji X
    Bioorg Med Chem; 2012 Jul; 20(14):4303-9. PubMed ID: 22727779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2.0 A X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue.
    Stammers DK; Achari A; Somers DO; Bryant PK; Rosemond J; Scott DL; Champness JN
    FEBS Lett; 1999 Jul; 456(1):49-53. PubMed ID: 10452528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of S. aureus HPPK and the discovery of a new substrate site inhibitor.
    Chhabra S; Dolezal O; Collins BM; Newman J; Simpson JS; Macreadie IG; Fernley R; Peat TS; Swarbrick JD
    PLoS One; 2012; 7(1):e29444. PubMed ID: 22276115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutagenesis of folylpolyglutamate synthetase indicates that dihydropteroate and tetrahydrofolate bind to the same site.
    Sheng Y; Khanam N; Tsaksis Y; Shi XM; Lu QS; Bognar AL
    Biochemistry; 2008 Feb; 47(8):2388-96. PubMed ID: 18232714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations.
    Jongkon N; Gleeson D; Gleeson MP
    Org Biomol Chem; 2018 Aug; 16(34):6239-6249. PubMed ID: 30109337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents.
    Zhao Y; Shadrick WR; Wallace MJ; Wu Y; Griffith EC; Qi J; Yun MK; White SW; Lee RE
    Bioorg Med Chem Lett; 2016 Aug; 26(16):3950-4. PubMed ID: 27423480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.