BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 11932071)

  • 1. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity.
    McGaraughty S; Heinricher MM
    Pain; 2002 Mar; 96(1-2):153-62. PubMed ID: 11932071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception.
    Meng ID; Johansen JP; Harasawa I; Fields HL
    J Neurophysiol; 2005 Mar; 93(3):1138-44. PubMed ID: 15456805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of brainstem N-methyl-D-aspartate receptors is required for the analgesic actions of morphine given systemically.
    Heinricher MM; Schouten JC; Jobst EE
    Pain; 2001 May; 92(1-2):129-38. PubMed ID: 11323134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine.
    Heinricher MM; McGaraughty S; Farr DA
    Pain; 1999 May; 81(1-2):57-65. PubMed ID: 10353493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance to repeated microinjection of morphine into the periaqueductal gray is associated with changes in the behavior of off- and on-cells in the rostral ventromedial medulla of rats.
    Tortorici V; Morgan MM; Vanegas H
    Pain; 2001 Jan; 89(2-3):237-44. PubMed ID: 11166480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli.
    Morgan MM; Fields HL
    J Neurophysiol; 1994 Sep; 72(3):1161-70. PubMed ID: 7807201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons.
    Tortorici V; Morgan MM
    J Neurophysiol; 2002 Oct; 88(4):1707-15. PubMed ID: 12364500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of excitatory amino acid transmission within the rostral ventromedial medulla: implications for circuitry.
    Heinricher MM; McGaraughty S
    Pain; 1998 Apr; 75(2-3):247-55. PubMed ID: 9583760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta opioid receptor mediated actions in the rostral ventromedial medulla on tail flick latency and nociceptive modulatory neurons.
    Harasawa I; Fields HL; Meng ID
    Pain; 2000 Mar; 85(1-2):255-62. PubMed ID: 10692626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity correlations between on-like and off-like cells of the rostral ventromedial medulla and simultaneously recorded wide-dynamic-range neurons of the spinal dorsal horn in rats.
    Salas R; Ramirez K; Vanegas H; Vazquez E
    Brain Res; 2016 Dec; 1652():103-110. PubMed ID: 27720764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical on-, off- and neutral cells in the rostral ventromedial medulla oblongata in rat.
    Schnell C; Ulucan C; Ellrich J
    Exp Brain Res; 2002 Jul; 145(1):64-75. PubMed ID: 12070746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla.
    Heinricher MM; Morgan MM; Tortorici V; Fields HL
    Neuroscience; 1994 Nov; 63(1):279-88. PubMed ID: 7898652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla.
    Morgan MM; Heinricher MM; Fields HL
    Neuroscience; 1992; 47(4):863-71. PubMed ID: 1579215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesions of the periaqueductal gray disrupt input to the rostral ventromedial medulla following microinjections of morphine into the medial or basolateral nuclei of the amygdala.
    McGaraughty S; Farr DA; Heinricher MM
    Brain Res; 2004 May; 1009(1-2):223-7. PubMed ID: 15120601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla.
    Helmstetter FJ; Tershner SA; Poore LH; Bellgowan PS
    Brain Res; 1998 Jan; 779(1-2):104-18. PubMed ID: 9473612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla.
    Heinricher MM; McGaraughty S; Tortorici V
    J Neurophysiol; 2001 Jan; 85(1):280-6. PubMed ID: 11152727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antinociception and modulation of rostral ventromedial medulla neuronal activity by local microinfusion of a cannabinoid receptor agonist.
    Meng ID; Johansen JP
    Neuroscience; 2004; 124(3):685-93. PubMed ID: 14980738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cellular mechanism for the antinociceptive effect of a kappa opioid receptor agonist.
    Ackley MA; Hurley RW; Virnich DE; Hammond DL
    Pain; 2001 Apr; 91(3):377-388. PubMed ID: 11275396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons.
    Cheng ZF; Fields HL; Heinricher MM
    Brain Res; 1986 Jun; 375(1):57-65. PubMed ID: 3719359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperalgesia during acute opioid abstinence: evidence for a nociceptive facilitating function of the rostral ventromedial medulla.
    Kaplan H; Fields HL
    J Neurosci; 1991 May; 11(5):1433-9. PubMed ID: 2027054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.