These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11932843)

  • 1. Upper-extremity torque production in men with paraplegia who use wheelchairs.
    Kotajarvi BR; Basford JR; An KN
    Arch Phys Med Rehabil; 2002 Apr; 83(4):441-6. PubMed ID: 11932843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper limb strength in individuals with spinal cord injury who use manual wheelchairs.
    Souza AL; Boninger ML; Fitzgerald SG; Shimada SD; Cooper RA; Ambrosio F
    J Spinal Cord Med; 2005; 28(1):26-32. PubMed ID: 15832901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity.
    Ellis MD; Acosta AM; Yao J; Dewald JP
    Exp Brain Res; 2007 Feb; 176(4):594-602. PubMed ID: 16924488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper limb function in persons with long term paraplegia and implications for independence: Part I.
    Pentland WE; Twomey LT
    Paraplegia; 1994 Apr; 32(4):211-8. PubMed ID: 8022630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences of Relative and Absolute Strength of Individuals With Spinal Cord Injury From Able-Bodied Subjects: A Discriminant Analysis.
    Ribeiro Neto F; Gomes Costa RR; Tanhoffer R; Bottaro M; Carregaro RL
    J Sport Rehabil; 2019 Sep; 28(7):699-705. PubMed ID: 30040012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury.
    Newsam CJ; Rao SS; Mulroy SJ; Gronley JK; Bontrager EL; Perry J
    Gait Posture; 1999 Dec; 10(3):223-32. PubMed ID: 10567754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Routhier F; Bouyer L; Desroches G
    J Appl Biomech; 2014 Aug; 30(4):574-80. PubMed ID: 24610281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Strength Cutoff Points for Functional Independence and Wheelchair Ability in Men With Spinal Cord Injury.
    Ribeiro Neto F; Gomes Costa RR; Tanhoffer RA; Leal JC; Bottaro M; Carregaro RL
    Arch Phys Med Rehabil; 2020 Jun; 101(6):985-993. PubMed ID: 32059946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system.
    Boninger ML; Cooper RA; Shimada SD; Rudy TE
    Spinal Cord; 1998 Jun; 36(6):418-26. PubMed ID: 9648199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional fatigue and upper extremity sensorimotor system acuity in baseball athletes.
    Tripp BL; Yochem EM; Uhl TL
    J Athl Train; 2007; 42(1):90-8. PubMed ID: 17597949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Wheelchair Stroke Pattern on Upper Extremity Muscle Fatigue.
    Bickelhaupt B; Oyama S; Benfield J; Burau K; Lee S; Trbovich M
    PM R; 2018 Oct; 10(10):1004-1011. PubMed ID: 29627608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of agonist-antagonist shoulder torque ratios in individuals with paraplegia: a new interpretative approach.
    Dehail P; Gagnon D; Noreau L; Nadeau S
    Spinal Cord; 2008 Aug; 46(8):552-8. PubMed ID: 18209741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range of motion and stroke frequency differences between manual wheelchair propulsion and pushrim-activated power-assisted wheelchair propulsion.
    Corfman TA; Cooper RA; Boninger ML; Koontz AM; Fitzgerald SG
    J Spinal Cord Med; 2003; 26(2):135-40. PubMed ID: 12828290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantification of shoulder power in trained and untrained paraplegic wheelchair athletes].
    Mayer F; Horstmann T; Martini F; Bilow H; Dickhuth HH
    Sportverletz Sportschaden; 1998 Dec; 12(4):147-51. PubMed ID: 10036717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional passive range of motion of individuals with chronic cervical spinal cord injury.
    Frye SK; Geigle PR; York HS; Sweatman WM
    J Spinal Cord Med; 2020 Mar; 43(2):257-263. PubMed ID: 31192777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.