BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11933060)

  • 1. Structural genomics analysis: characteristics of atypical, common, and horizontally transferred folds.
    Hegyi H; Lin J; Greenbaum D; Gerstein M
    Proteins; 2002 May; 47(2):126-41. PubMed ID: 11933060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annotation transfer for genomics: measuring functional divergence in multi-domain proteins.
    Hegyi H; Gerstein M
    Genome Res; 2001 Oct; 11(10):1632-40. PubMed ID: 11591640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information.
    Qian J; Stenger B; Wilson CA; Lin J; Jansen R; Teichmann SA; Park J; Krebs WG; Yu H; Alexandrov V; Echols N; Gerstein M
    Nucleic Acids Res; 2001 Apr; 29(8):1750-64. PubMed ID: 11292848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein folds in the worm genome.
    Gerstein M; Lin J; Hegyi H
    Pac Symp Biocomput; 2000; ():30-41. PubMed ID: 10902154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting novel folds for structural genomics.
    McGuffin LJ; Jones DT
    Proteins; 2002 Jul; 48(1):44-52. PubMed ID: 12012336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome.
    Hegyi H; Gerstein M
    J Mol Biol; 1999 Apr; 288(1):147-64. PubMed ID: 10329133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds.
    Sadreyev RI; Grishin NV
    BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model.
    Qian J; Luscombe NM; Gerstein M
    J Mol Biol; 2001 Nov; 313(4):673-81. PubMed ID: 11697896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of protein folds in the three superkingdoms of life.
    Wolf YI; Brenner SE; Bash PA; Koonin EV
    Genome Res; 1999 Jan; 9(1):17-26. PubMed ID: 9927481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census.
    Gerstein M
    Proteins; 1998 Dec; 33(4):518-34. PubMed ID: 9849936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications.
    Chandonia JM; Kim SH
    BMC Struct Biol; 2006 Mar; 6():7. PubMed ID: 16566839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROC and confusion analysis of structure comparison methods identify the main causes of divergence from manual protein classification.
    Sam V; Tai CH; Garnier J; Gibrat JF; Lee B; Munson PJ
    BMC Bioinformatics; 2006 Apr; 7():206. PubMed ID: 16613604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure.
    Gerstein M
    J Mol Biol; 1997 Dec; 274(4):562-76. PubMed ID: 9417935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain combinations in archaeal, eubacterial and eukaryotic proteomes.
    Apic G; Gough J; Teichmann SA
    J Mol Biol; 2001 Jul; 310(2):311-25. PubMed ID: 11428892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins.
    Jansen R; Gerstein M
    Nucleic Acids Res; 2000 Mar; 28(6):1481-8. PubMed ID: 10684945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific protein sequence and fold optimizations.
    Dumontier M; Michalickova K; Hogue CW
    BMC Bioinformatics; 2002 Dec; 3():39. PubMed ID: 12487631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global perspectives on proteins: comparing genomes in terms of folds, pathways and beyond.
    Das R; Junker J; Greenbaum D; Gerstein MB
    Pharmacogenomics J; 2001; 1(2):115-25. PubMed ID: 11911438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing genomes in terms of protein structure: surveys of a finite parts list.
    Gerstein M; Hegyi H
    FEMS Microbiol Rev; 1998 Oct; 22(4):277-304. PubMed ID: 10357579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.