These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11933064)

  • 1. Hamming distance geometry of a protein conformational space: application to the clustering of a 4-ns molecular dynamics trajectory of the HIV-1 integrase catalytic core.
    Laboulais C; Ouali M; Le Bret M; Gabarro-Arpa J
    Proteins; 2002 May; 47(2):169-79. PubMed ID: 11933064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian model based clustering analysis: application to a molecular dynamics trajectory of the HIV-1 integrase catalytic core.
    Li Y
    J Chem Inf Model; 2006; 46(4):1742-50. PubMed ID: 16859306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants.
    Lee MC; Deng J; Briggs JM; Duan Y
    Biophys J; 2005 May; 88(5):3133-46. PubMed ID: 15731379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays.
    Laboulais C; Deprez E; Leh H; Mouscadet JF; Brochon JC; Le Bret M
    Biophys J; 2001 Jul; 81(1):473-89. PubMed ID: 11423430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain.
    Brigo A; Lee KW; Iurcu Mustata G; Briggs JM
    Biophys J; 2005 May; 88(5):3072-82. PubMed ID: 15764656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study.
    Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A
    J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian and essential dynamics studies of the HIV-1 integrase catalytic domain.
    Weber W; Demirdjian H; Lins RD; Briggs JM; Ferreira R; McCammon JA
    J Biomol Struct Dyn; 1998 Dec; 16(3):733-45. PubMed ID: 10052629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase-DNA complex.
    Wang LD; Liu CL; Chen WZ; Wang CX
    Biochem Biophys Res Commun; 2005 Nov; 337(1):313-9. PubMed ID: 16188234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics studies on the HIV-1 integrase catalytic domain.
    Lins RD; Briggs JM; Straatsma TP; Carlson HA; Greenwald J; Choe S; McCammon JA
    Biophys J; 1999 Jun; 76(6):2999-3011. PubMed ID: 10354426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel HIV integrase inhibitors with anti-HIV activity: insights into integrase inhibition from docking studies.
    Cox AG; Nair V
    Antivir Chem Chemother; 2006; 17(6):343-53. PubMed ID: 17249248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance.
    Dewdney TG; Wang Y; Kovari IA; Reiter SJ; Kovari LC
    J Struct Biol; 2013 Nov; 184(2):245-50. PubMed ID: 23891838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations.
    Wijitkosoom A; Tonmunphean S; Truong TN; Hannongbua S
    J Biomol Struct Dyn; 2006 Jun; 23(6):613-24. PubMed ID: 16615807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant.
    Bujacz G; Alexandratos J; Qing ZL; Clément-Mella C; Wlodawer A
    FEBS Lett; 1996 Dec; 398(2-3):175-8. PubMed ID: 8977101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics studies of the full-length integrase-DNA complex.
    De Luca L; Vistoli G; Pedretti A; Barreca ML; Chimirri A
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1010-6. PubMed ID: 16165087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of a mutant of the HIV-1 integrase zinc finger domain that forms a single conformation.
    Nomura Y; Masuda T; Kawai G
    J Biochem; 2006 Apr; 139(4):753-9. PubMed ID: 16672276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain.
    Molteni V; Greenwald J; Rhodes D; Hwang Y; Kwiatkowski W; Bushman FD; Siegel JS; Choe S
    Acta Crystallogr D Biol Crystallogr; 2001 Apr; 57(Pt 4):536-44. PubMed ID: 11264582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA.
    Du W; Zuo K; Sun X; Liu W; Yan X; Liang L; Wan H; Chen F; Hu J
    J Mol Graph Model; 2017 Nov; 78():96-109. PubMed ID: 29055187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein.
    Wang JY; Ling H; Yang W; Craigie R
    EMBO J; 2001 Dec; 20(24):7333-43. PubMed ID: 11743009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 integrase: structural organization, conformational changes, and catalysis.
    Asante-Appiah E; Skalka AM
    Adv Virus Res; 1999; 52():351-69. PubMed ID: 10384242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting HIV-1 integrase with strand transfer inhibitors.
    Li Y; Xuan S; Feng Y; Yan A
    Drug Discov Today; 2015 Apr; 20(4):435-49. PubMed ID: 25486307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.