These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11934019)

  • 1. Application of recurrent neural network to predict bacterial growth in dynamic conditions.
    Cheroutre-Vialette M; Lebert A
    Int J Food Microbiol; 2002 Mar; 73(2-3):107-18. PubMed ID: 11934019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the growth of Listeria monocytogenes in dynamic conditions.
    Cheroutre-Vialette M; Lebert A
    Int J Food Microbiol; 2000 Apr; 55(1-3):201-7. PubMed ID: 10791744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH or a(w) stress on growth of Listeria monocytogenes.
    Cheroutre-Vialette M; Lebert I; Hebraud M; Labadie JC; Lebert A
    Int J Food Microbiol; 1998 Jun; 42(1-2):71-7. PubMed ID: 9706800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes.
    McClure PJ; Kelly TM; Roberts TA
    Int J Food Microbiol; 1991 Oct; 14(1):77-91. PubMed ID: 1742175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Listeria spp. growth as affected by various levels of chemicals, pH, temperature and storage time in a model broth.
    Razavilar V; Genigeorgis C
    Int J Food Microbiol; 1998 Apr; 40(3):149-57. PubMed ID: 9620122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modelling of growth of Listeria monocytogenes. The effects on growth of NaCl, pH, storage temperature and NaNO2.
    McClure PJ; Beaumont AL; Sutherland JP; Roberts TA
    Int J Food Microbiol; 1997 Mar; 34(3):221-32. PubMed ID: 9039568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses.
    Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN
    Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the growth environment on the lag phase of Listeria monocytogenes.
    Robinson TP; Ocio MJ; Kaloti A; Mackey BM
    Int J Food Microbiol; 1998 Oct; 44(1-2):83-92. PubMed ID: 9849786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes.
    Fernández PS; George SM; Sills CC; Peck MW
    Int J Food Microbiol; 1997 Jun; 37(1):37-45. PubMed ID: 9237120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes Scott A to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge.
    Chorianopoulos N; Giaouris E; Grigoraki I; Skandamis P; Nychas GJ
    Int J Food Microbiol; 2011 Feb; 145(2-3):400-6. PubMed ID: 21295367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations.
    Boziaris IS; Skandamis PN; Anastasiadi M; Nychas GJ
    J Appl Microbiol; 2007 Mar; 102(3):796-805. PubMed ID: 17309630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature.
    Wijtzes T; McClure PJ; Zwietering MH; Roberts TA
    Int J Food Microbiol; 1993 Apr; 18(2):139-49. PubMed ID: 8494680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nisin on growth boundaries of Listeria monocytogenes Scott A, at various temperatures, pH and water activities.
    Boziaris IS; Nychas GJ
    Food Microbiol; 2006 Dec; 23(8):779-84. PubMed ID: 16943082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of divercin V41 combined to NaCl content, phenol (liquid smoke) concentration and pH on Listeria monocytogenes ScottA growth in BHI broth by an experimental design approach.
    Lebois M; Connil N; Onno B; Prévost H; Dousset X
    J Appl Microbiol; 2004; 96(5):931-7. PubMed ID: 15078508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes.
    Vasseur C; Baverel L; Hébraud M; Labadie J
    J Appl Microbiol; 1999 Mar; 86(3):469-76. PubMed ID: 10196752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematically modeling the repair of heat-injured Listeria monocytogenes as affected by temperature, pH, and salt concentration.
    Chawla CS; Chen H; Donnelly CW
    Int J Food Microbiol; 1996 Jul; 30(3):231-42. PubMed ID: 8854177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of growth/no growth interface of Listeria monocytogenes growing on stainless steel surfaces, detached from biofilms or in suspension, in response to pH and NaCl.
    Belessi CE; Gounadaki AS; Schvartzman S; Jordan K; Skandamis PN
    Int J Food Microbiol; 2011 Mar; 145 Suppl 1():S53-60. PubMed ID: 21122934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.