BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11934030)

  • 1. Aspergillus flavus dose-response curves to selected natural and synthetic antimicrobials.
    López-Malo A; Alzamora SM; Palou E
    Int J Food Microbiol; 2002 Mar; 73(2-3):213-8. PubMed ID: 11934030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds.
    López-Malo A; Maris Alzamora S; Palou E
    Int J Food Microbiol; 2005 Mar; 99(2):119-28. PubMed ID: 15734560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH.
    Santiesteban-López A; Palou E; López-Malo A
    J Appl Microbiol; 2007 Feb; 102(2):486-97. PubMed ID: 17241355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth response of Escherichia coli ATCC 35218 adapted to several concentrations of sodium benzoate and potassium sorbate.
    Santiesteban-López NA; Rosales M; Palou E; López-Malo A
    J Food Prot; 2009 Nov; 72(11):2301-7. PubMed ID: 19903392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic inhibitory effect of citral with selected phenolics against Zygosaccharomyces bailii.
    Rivera-Carriles K; Argaiz A; Palou E; López-Malo A
    J Food Prot; 2005 Mar; 68(3):602-6. PubMed ID: 15771189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of naturally occurring antimicrobials and chemical preservatives on the growth of Aspergillus Parasiticus.
    Pillai P; Ramaswamy K
    J Food Sci Technol; 2012 Apr; 49(2):228-33. PubMed ID: 23572846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of natamycin and potassium sorbate on growth and aflatoxin production in olives.
    Mahjoub A; Bullerman LB
    Arch Inst Pasteur Tunis; 1986 Dec; 63(4):513-25. PubMed ID: 3099668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).
    Guynot ME; Ramos AJ; Sanchis V; Marín S
    Int J Food Microbiol; 2005 May; 101(2):161-8. PubMed ID: 15862878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual and combined effects of vanillin and potassium sorbate on Penicillium digitatum, Penicillium glabrum, and Penicillium italicum growth.
    Matamoros-León B; Argaiz A; López-Malo A
    J Food Prot; 1999 May; 62(5):540-2. PubMed ID: 10340678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An attempt to optimize potassium sorbate use to preserve low pH (4.5-5.5) intermediate moisture bakery products by modelling Eurotium spp., Aspergillus spp. and Penicillium corylophilum growth.
    Guynot ME; Marín S; Sanchis V; Ramos AJ
    Int J Food Microbiol; 2005 May; 101(2):169-77. PubMed ID: 15862879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates.
    Nemes D; Kovács R; Nagy F; Tóth Z; Herczegh P; Borbás A; Kelemen V; Pfliegler WP; Rebenku I; Hajdu PB; Fehér P; Ujhelyi Z; Fenyvesi F; Váradi J; Vecsernyés M; Bácskay I
    Eur J Pharm Sci; 2020 Feb; 143():105162. PubMed ID: 31756446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinations of antimycotics to inhibit the growth of molds capable of producing 1,3-pentadiene.
    Mann DA; Beuchat LR
    Food Microbiol; 2008 Feb; 25(1):144-53. PubMed ID: 17993388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Investigation of antimicrobial and antibiofilm effects of some preservatives used in drugs, cosmetics and food products].
    Güven N; Kaynak Onurdağ F
    Mikrobiyol Bul; 2014 Jan; 48(1):94-105. PubMed ID: 24506719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of solutes and food preservatives on rates of inactivation of and colony formation by heated spores and vegetative cells of molds.
    Beuchat LR
    Appl Environ Microbiol; 1981 Feb; 41(2):472-7. PubMed ID: 7195189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the inhibition of Salmonella typhimurium growth by combination of food antimicrobials.
    Kobilinsky A; Nazer AI; Dubois-Brissonnet F
    Int J Food Microbiol; 2007 Apr; 115(1):95-109. PubMed ID: 17254659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets.
    Neetoo H; Ye M; Chen H
    Int J Food Microbiol; 2008 Apr; 123(3):220-7. PubMed ID: 18308410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing organic acids and salt derivatives as antimicrobials against selected poultry-borne Listeria monocytogenes strains in vitro.
    Lues JF; Theron MM
    Foodborne Pathog Dis; 2012 Dec; 9(12):1126-9. PubMed ID: 23190165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating in vitro antimicrobial activity of thymol toward hygiene-indicating and pathogenic bacteria.
    Falcone PM; Mastromatteo M; Del Nobile MA; Corbo MR; Sinigaglia M
    J Food Prot; 2007 Feb; 70(2):425-31. PubMed ID: 17340879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of selected Turkish spices and oregano components on some foodborne fungi.
    Akgül A; Kivanç M
    Int J Food Microbiol; 1988 May; 6(3):263-8. PubMed ID: 2978951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol.
    Fahimirad S; Abtahi H; Razavi SH; Alizadeh H; Ghorbanpour M
    Molecules; 2017 May; 22(6):. PubMed ID: 28561787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.