These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11934048)

  • 1. Debating the biological reality of modelling preservation.
    ter SP; Ueckert JE
    Int J Food Microbiol; 2002 Mar; 73(2-3):409-14. PubMed ID: 11934048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive microbiology: providing a knowledge-based framework for change management.
    McMeekin TA; Ross T
    Int J Food Microbiol; 2002 Sep; 78(1-2):133-53. PubMed ID: 12222630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields.
    Lebovka NI; Vorobiev E
    Int J Food Microbiol; 2004 Feb; 91(1):83-9. PubMed ID: 14967563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means.
    Smelt JP; Hellemons JC; Wouters PC; van Gerwen SJ
    Int J Food Microbiol; 2002 Sep; 78(1-2):57-77. PubMed ID: 12222638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.
    Nuin M; Alfaro B; Cruz Z; Argarate N; George S; Le Marc Y; Olley J; Pin C
    Int J Food Microbiol; 2008 Oct; 127(3):193-9. PubMed ID: 18692267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological actions of preservative agents: prospective of use of modern microbiological techniques in assessing microbial behaviour in food preservation.
    Brul S; Coote P; Oomes S; Mensonides F; Hellingwerf K; Klis F
    Int J Food Microbiol; 2002 Nov; 79(1-2):55-64. PubMed ID: 12382685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An explanation for the effect of inoculum size on MIC and the growth/no growth interface.
    Bidlas E; Du T; Lambert RJ
    Int J Food Microbiol; 2008 Aug; 126(1-2):140-52. PubMed ID: 18573556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Hurdle Technology in Food Preservation: A Review.
    Singh S; Shalini R
    Crit Rev Food Sci Nutr; 2016; 56(4):641-9. PubMed ID: 25222150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of inoculum size on the growth of Penicillium expansum in apples.
    Baert K; Devlieghere F; Bo L; Debevere J; De Meulenaer B
    Food Microbiol; 2008 Feb; 25(1):212-7. PubMed ID: 17993398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriocin-based strategies for food biopreservation.
    Gálvez A; Abriouel H; López RL; Ben Omar N
    Int J Food Microbiol; 2007 Nov; 120(1-2):51-70. PubMed ID: 17614151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of predictive modelling techniques in industry: from food design up to risk assessment.
    Membré JM; Lambert RJ
    Int J Food Microbiol; 2008 Nov; 128(1):10-5. PubMed ID: 18701182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the growth, survival and death of microorganisms in foods: the UK food micromodel approach.
    McClure PJ; Blackburn CW; Cole MB; Curtis PS; Jones JE; Legan JD; Ogden ID; Peck MW; Roberts TA; Sutherland JP
    Int J Food Microbiol; 1994 Nov; 23(3-4):265-75. PubMed ID: 7873330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions.
    Taoukis PS; Koutsoumanis K; Nychas GJ
    Int J Food Microbiol; 1999 Dec; 53(1):21-31. PubMed ID: 10598111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of predictive microbiology: strategic research, innovative applications and great expectations.
    McMeekin T; Bowman J; McQuestin O; Mellefont L; Ross T; Tamplin M
    Int J Food Microbiol; 2008 Nov; 128(1):2-9. PubMed ID: 18703250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive modelling of the recovery of Listeria monocytogenes on sliced cooked ham after high pressure processing.
    Koseki S; Mizuno Y; Yamamoto K
    Int J Food Microbiol; 2007 Nov; 119(3):300-7. PubMed ID: 17900728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation and pathogen control: a risk assessment approach.
    Adams M; Mitchell R
    Int J Food Microbiol; 2002 Nov; 79(1-2):75-83. PubMed ID: 12382687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the effects of (green) antifungals, droplet size distribution and temperature on mould outgrowth in water-in-oil emulsions.
    ter Steeg PF; Otten GD; Alderliesten M; de Weijer R; Naaktgeboren G; Bijl J; Vasbinder AJ; Kershof I; van Duijvendijk AM
    Int J Food Microbiol; 2001 Aug; 67(3):227-39. PubMed ID: 11518432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.