These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11934168)

  • 21. Effect of strong atmospheric non-Kolmogorov turbulence on the M-ary PSK subcarrier intensity modulated free space optical communications system performance.
    Ata Y; Baykal Y; Gökçe MC
    Appl Opt; 2019 May; 58(13):3639-3645. PubMed ID: 31044866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of scintillation effects along a 7  km urban space laser communication path.
    Jiang L; Dai T; Yu X; Dai Z; Wang C; Tong S
    Appl Opt; 2020 Sep; 59(27):8418-8425. PubMed ID: 32976436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams.
    Zhu Z; Janasik M; Fyffe A; Hay D; Zhou Y; Kantor B; Winder T; Boyd RW; Leuchs G; Shi Z
    Nat Commun; 2021 Mar; 12(1):1666. PubMed ID: 33712593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.
    Lyke SD; Voelz DG; Roggemann MC
    Appl Opt; 2009 Nov; 48(33):6511-27. PubMed ID: 19935974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive optics and ground-to-space laser communications.
    Tyson RK
    Appl Opt; 1996 Jul; 35(19):3640-6. PubMed ID: 21102759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence.
    Ma J; Li K; Tan L; Yu S; Cao Y
    Appl Opt; 2015 Sep; 54(25):7575-85. PubMed ID: 26368880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel.
    Faridzadeh M; Gholami A; Ghassemlooy Z; Rajbhandari S
    J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1680-5. PubMed ID: 23201885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system.
    Ma J; Jiang Y; Tan L; Yu S; Du W
    Opt Lett; 2008 Nov; 33(22):2611-3. PubMed ID: 19015684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarization coherent optical communications with adaptive polarization control over atmospheric turbulence.
    Ding S; Li R; Luo Y; Dang A
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1204-1211. PubMed ID: 30110313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive-optics compensation by distributed beacons for non-kolmogorov turbulence.
    Rao C; Jiang W; Ling N
    Appl Opt; 2001 Jul; 40(21):3441-9. PubMed ID: 18360369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.
    Wright MW; Morris JF; Kovalik JM; Andrews KS; Abrahamson MJ; Biswas A
    Opt Express; 2015 Dec; 23(26):33705-12. PubMed ID: 26832033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental validation of phase-only pre-compensation over 494  m free-space propagation.
    Brady A; Berlich R; Leonhard N; Kopf T; Böttner P; Eberhardt R; Reinlein C
    Opt Lett; 2017 Jul; 42(14):2679-2682. PubMed ID: 28708142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of an OFDM STBC-MISO system in uplink terrestrial-satellite laser communication.
    Wang Y; Wang Q
    Appl Opt; 2021 Jan; 60(3):785-791. PubMed ID: 33690452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive free-space optical communications through turbulence using self-healing Bessel beams.
    Li S; Wang J
    Sci Rep; 2017 Feb; 7():43233. PubMed ID: 28230076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication.
    Tellez JA; Schmidt JD
    Appl Opt; 2011 Aug; 50(24):4737-45. PubMed ID: 21857696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atmospheric-compensation experiments in strong-scintillation conditions.
    Primmerman CA; Price TR; Humphreys RA; Zollars BG; Barclay HT; Herrmann J
    Appl Opt; 1995 Apr; 34(12):2081-8. PubMed ID: 21037754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive optics model characterizing turbulence mitigation for free space optical communications link budgets.
    Stotts LB; Andrews LC
    Opt Express; 2021 Jun; 29(13):20307-20321. PubMed ID: 34266123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Full-duplex transmission without an uplink light source for a millimeter-wave radio over a free-space optical system.
    Zhang S; Zhao L; Song S; Guo L; Liu Y
    Appl Opt; 2022 Oct; 61(28):8323-8332. PubMed ID: 36256145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free Space Ground to Satellite Optical Communications Using Kramers-Kronig Transceiver in the Presence of Atmospheric Turbulence.
    Naghshvarianjahromi M; Kumar S; Deen MJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels.
    García-Zambrana A; Castillo-Vázquez C; Castillo-Vázquez B
    Opt Express; 2010 Mar; 18(6):5356-66. PubMed ID: 20389550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.