These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11934168)

  • 41. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.
    Jian H; Ke D; Chao L; Peng Z; Dagang J; Zhoushi Y
    Opt Express; 2014 Jun; 22(13):16000-7. PubMed ID: 24977856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system.
    Zhang H; Xu L; Guo Y; Cao J; Liu W; Yang L
    Opt Express; 2022 Feb; 30(5):7477-7490. PubMed ID: 35299509
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of different beacon wavelengths on atmospheric compensation in strong scintillation.
    Fan C; Wang Y; Gong Z
    Appl Opt; 2004 Aug; 43(22):4334-8. PubMed ID: 15298405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance of M-ary pulse position modulation for aeronautical uplink communications in an atmospheric turbulent medium.
    Ata Y; Baykal Y; Gökçe MC
    Appl Opt; 2019 Oct; 58(28):7909-7914. PubMed ID: 31674480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FAST: Fourier domain adaptive optics simulation tool for bidirectional ground-space optical links through atmospheric turbulence.
    Farley OJD; Townson MJ; Osborn J
    Opt Express; 2022 Jun; 30(13):23050-23064. PubMed ID: 36224993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Threshold detection in an on-off binary communications channel with atmospheric scintillation.
    Webb WE; Marino JT
    Appl Opt; 1975 Jun; 14(6):1413-7. PubMed ID: 20154839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Free-space transmission system in a tunable simulated atmospheric turbulence channel using a high-repetition-rate broadband fiber laser.
    Chen J; Wang T; Zhang X; Sun Z; Jiang Z; Yao H; Chen P; Zhao Y; Jiang H
    Appl Opt; 2019 Apr; 58(10):2635-2640. PubMed ID: 31045068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator.
    Tian Q; Li Z; Hu K; Zhu L; Pan X; Zhang Q; Wang Y; Tian F; Yin X; Xin X
    Opt Express; 2018 Oct; 26(21):27849-27864. PubMed ID: 30469843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence.
    Arikawa M; Ito T
    Opt Express; 2018 Oct; 26(22):28263-28276. PubMed ID: 30470001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergy of adaptive thresholds and multiple transmitters in free-space optical communication.
    Louthain JA; Schmidt JD
    Opt Express; 2010 Apr; 18(9):8948-62. PubMed ID: 20588740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Earth-to-deep-space optical communications system with adaptive tilt and scintillation correction by use of near-Earth relay mirrors.
    Armstrong JW; Yeh C; Wilson KE
    Opt Lett; 1998 Jul; 23(14):1087-9. PubMed ID: 18087436
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of controllable parameter synchronization on the ensemble average bit error rate of space-to-ground downlink chaos laser communication system.
    Li M; Hong Y; Song Y; Zhang X
    Opt Express; 2018 Feb; 26(3):2954-2964. PubMed ID: 29401828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links.
    Toyoshima M; Takenaka H; Takayama Y
    Opt Express; 2011 Aug; 19(17):15965-75. PubMed ID: 21934960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scintillation and bit error rate analysis of a partially coherent flat-topped array laser beam in maritime and terrestrial non-Kolmogorov atmospheric environments on a slant path.
    Golmohammady S; Yousefi M; Mashal A; Ghafary B
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1427-1437. PubMed ID: 30110280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications.
    Weyrauch T; Vorontsov MA
    Appl Opt; 2005 Oct; 44(30):6388-401. PubMed ID: 16252651
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scintillation index reducing based on wide-spectral mode-locking fiber laser carriers in a simulated atmospheric turbulent channel.
    Zhang X; Wang T; Chen J; Yao H
    Opt Lett; 2018 Jul; 43(14):3421-3424. PubMed ID: 30004520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels.
    Niu M; Cheng J; Holzman JF
    Opt Express; 2010 Jun; 18(13):13915-26. PubMed ID: 20588524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modal compensation of atmospheric turbulence induced wave front aberrations.
    Winocur J
    Appl Opt; 1982 Feb; 21(3):433-8. PubMed ID: 20372474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of free-space optical communication systems: effect of aerosol-induced lower atmospheric warming.
    Sunilkumar K; Anand N; Satheesh SK; Krishna Moorthy K; Ilavazhagan G
    Opt Express; 2019 Apr; 27(8):11303-11311. PubMed ID: 31052976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system.
    Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S
    Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.