BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 11934288)

  • 1. Kinetics of the pectin methylesterase catalyzed de-esterification of pectin in frozen food model systems.
    Terefe NS; Hendrickx M
    Biotechnol Prog; 2002; 18(2):221-8. PubMed ID: 11934288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the kinetics of the pectin methylesterase catalyzed de-esterfication of pectin in frozen systems.
    Terefe NS; Nhan MT; Vallejo D; Van Loey A; Hendrickx M
    Biotechnol Prog; 2004; 20(2):480-90. PubMed ID: 15058993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cryostabilizers, low temperature, and freezing on the kinetics of the pectin methylesterase-catalyzed de-esterification of pectin.
    Terefe NS; Delele MA; Van Loey A; Hendrickx M
    J Agric Food Chem; 2005 Mar; 53(6):2282-8. PubMed ID: 15769169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the alkaline phosphatase catalyzed hydrolysis of disodium p-nitrophenyl phosphate in frozen model systems.
    Terefe NS; Mokwena KK; Loey AV; Hendrickx ME
    Biotechnol Prog; 2002; 18(6):1249-56. PubMed ID: 12467459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the alkaline phosphatase catalyzed hydrolysis of disodium p-nitrophenyl phosphate: effects of carbohydrate additives, low temperature, and freezing.
    Terefe NS; Arimi JM; Van Loey A; Hendrickx M
    Biotechnol Prog; 2004; 20(5):1467-78. PubMed ID: 15458332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enthalpy relaxation of freeze concentrated sucrose-water glass.
    Inoue C; Suzuki T
    Cryobiology; 2006 Feb; 52(1):83-9. PubMed ID: 16321366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of reaction kinetics in relation to the Tg' of polymers in frozen model systems.
    Lim MH; Reid DS
    Adv Exp Med Biol; 1991; 302():103-22. PubMed ID: 1746323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mild-heat and high-pressure processing on banana pectin methylesterase: a kinetic study.
    Ly-Nguyen B; Van Loey AM; Smout C; Verlent I; Duvetter T; Hendrickx ME
    J Agric Food Chem; 2003 Dec; 51(27):7974-9. PubMed ID: 14690382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.
    Zuo JG; Hua TC; Liu BL; Zhou GY
    Cryo Letters; 2005; 26(5):289-96. PubMed ID: 19827244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature and high pressure on the activity and mode of action of fungal pectin methyl esterase.
    Duvetter T; Fraeye I; Sila DN; Verlent I; Smout C; Clynen E; Schoofs L; Schols H; Hendrickx M; Van Loey A
    Biotechnol Prog; 2006; 22(5):1313-20. PubMed ID: 17022669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix.
    Higl B; Kurtmann L; Carlsen CU; Ratjen J; Först P; Skibsted LH; Kulozik U; Risbo J
    Biotechnol Prog; 2007; 23(4):794-800. PubMed ID: 17636886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
    Rossi S; Buera MP; Moreno S; Chirife J
    Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation.
    Poirier-Brulez F; Roudaut G; Champion D; Tanguy M; Simatos D
    Biopolymers; 2006 Feb; 81(2):63-73. PubMed ID: 16127661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the temperature activation of pectin methylesterase in green beans and tomatoes.
    Anthon GE; Barrett DM
    J Agric Food Chem; 2006 Jan; 54(1):204-11. PubMed ID: 16390200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying state diagrams to food processing and development.
    Roos Y; Karel M
    Food Technol; 1991 Dec; 45(12):66, 68-71, 107. PubMed ID: 11537636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of excited-state proton transfer in water electrolyte solutions and water-methanol solutions.
    Leiderman P; Gepshtein R; Uritski A; Genosar L; Huppert D
    J Phys Chem A; 2006 Jul; 110(29):9039-50. PubMed ID: 16854014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose.
    Saavedra-Leos MZ; Grajales-Lagunes A; González-García R; Toxqui-Terán A; Pérez-García SA; Abud-Archila MA; Ruiz-Cabrera MA
    J Food Sci; 2012 May; 77(5):E118-26. PubMed ID: 23163938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glass transition and dielectric secondary relaxation of fructose-water mixtures.
    Shinyashiki N; Shinohara M; Iwata Y; Goto T; Oyama M; Suzuki S; Yamamoto W; Yagihara S; Inoue T; Oyaizu S; Yamamoto S; Ngai KL; Capaccioli S
    J Phys Chem B; 2008 Dec; 112(48):15470-7. PubMed ID: 18991437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.