These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11934303)

  • 1. Dean vortex membrane microfiltration and diafiltration of rBDNF E. coli inclusion bodies.
    Schutyser M; Rupp R; Wideman J; Belfort G
    Biotechnol Prog; 2002; 18(2):322-9. PubMed ID: 11934303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology.
    Luque S; Mallubhotla H; Gehlert G; Kuriyel R; Dzengeleski S; Pearl S; Belfort G
    Biotechnol Bioeng; 1999 Nov; 65(3):247-57. PubMed ID: 10486122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein transmission during Dean vortex microfiltration of yeast suspensions.
    Kluge T; Rezende C; Wood D; Belfort G
    Biotechnol Bioeng; 1999 Dec; 65(6):649-58. PubMed ID: 10550771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfiltration of yeast suspensions with self-cleaning spiral vortices: possibilities for a new membrane module design.
    Mallubhotla H; Nunes E; Belfort G
    Biotechnol Bioeng; 1995 Nov; 48(4):375-85. PubMed ID: 18623498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized removal of soluble host cell proteins for the recovery of met-human growth hormone inclusion bodies from Escherichia coli cell lysate using crossflow microfiltration.
    Venkiteshwaran A; Heider P; Matosevic S; Bogsnes A; Staby A; Sharfstein S; Belfort G
    Biotechnol Prog; 2007; 23(3):667-72. PubMed ID: 17480055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment.
    Lee S; Park PK; Kim JH; Yeon KM; Lee CH
    Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new derivatizing agent, trimethylammoniopropyl methanethiosulphonate, is efficient for preparation of recombinant brain-derived neurotrophic factor from inclusion bodies.
    Inoue M; Akimaru J; Nishikawa T; Seki N; Yamada H
    Biotechnol Appl Biochem; 1998 Dec; 28 ( Pt 3)():207-13. PubMed ID: 9799718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined in-fermenter extraction and cross-flow microfiltration for improved inclusion body processing.
    Tin Lee C; Morreale G; Middelberg AP
    Biotechnol Bioeng; 2004 Jan; 85(1):103-13. PubMed ID: 14705017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.
    Zulewska J; Newbold M; Barbano DM
    J Dairy Sci; 2009 Apr; 92(4):1361-77. PubMed ID: 19307617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced filtration using flat membranes and standing vortex waves.
    Bellhouse BJ; Sobey IJ; Alani S; DeBlois BM
    Bioseparation; 1994 Apr; 4(2):127-38. PubMed ID: 7765040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure and flux profiles in bead-filled ultrafiltration/microfiltration hollow fiber membrane modules.
    Dai XP; Luo RG; Sirkar KK
    Biotechnol Prog; 2000; 16(6):1044-54. PubMed ID: 11101333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography.
    Batas B; Schiraldi C; Chaudhuri JB
    J Biotechnol; 1999 Feb; 68(2-3):149-58. PubMed ID: 10194854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fouling and its reversibility in relation to flow properties and module design in aerated hollow fibre modules for membrane bioreactors.
    Pollet S; Guigui C; Cabassud C
    Water Sci Technol; 2008; 57(4):629-36. PubMed ID: 18360006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system.
    Lee SS; Burt A; Russotti G; Buckland B
    Biotechnol Bioeng; 1995 Nov; 48(4):386-400. PubMed ID: 18623499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk.
    Baruah GL; Couto D; Belfort G
    Biotechnol Prog; 2003; 19(5):1533-40. PubMed ID: 14524716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.
    Zulewska J; Barbano DM
    J Dairy Sci; 2014 May; 97(5):2619-32. PubMed ID: 24612815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimic of a large-scale diafiltration process by using ultra scale-down rotating disc filter.
    Ma G; Aucamp J; Gerontas S; Eardley-Patel R; Craig A; Hoare M; Zhou Y
    Biotechnol Prog; 2010; 26(2):466-76. PubMed ID: 19938066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale preparation of bacterial cell membranes by tangential flow filtration.
    Roach PC; Postis VL; Deacon SE; Wright GS; Ingram JC; Xia X; McPherson MJ; Baldwin SA
    Mol Membr Biol; 2008 Dec; 25(8):609-16. PubMed ID: 19021076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.