These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11934490)

  • 1. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Reilly MS; Grogan DW
    FEMS Microbiol Lett; 2002 Feb; 208(1):29-34. PubMed ID: 11934490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light.
    Wood ER; Ghané F; Grogan DW
    J Bacteriol; 1997 Sep; 179(18):5693-8. PubMed ID: 9294423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius.
    Quaiser A; Constantinesco F; White MF; Forterre P; Elie C
    BMC Mol Biol; 2008 Feb; 9():25. PubMed ID: 18294364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures.
    Schmidt KJ; Beck KE; Grogan DW
    Genetics; 1999 Aug; 152(4):1407-15. PubMed ID: 10430571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems.
    Grogan DW; Stengel KR
    Mol Microbiol; 2008 Sep; 69(5):1255-65. PubMed ID: 18631240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.
    Sakofsky CJ; Grogan DW
    Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rates of spontaneous mutation in an archaeon from geothermal environments.
    Jacobs KL; Grogan DW
    J Bacteriol; 1997 May; 179(10):3298-303. PubMed ID: 9150227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius.
    Bell GD; Grogan DW
    Archaea; 2002 Mar; 1(1):45-52. PubMed ID: 15803658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius.
    Suzuki S; Kurosawa N
    Microbes Environ; 2019 Dec; 34(4):363-373. PubMed ID: 31548441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius.
    van Wolferen M; Ajon M; Driessen AJ; Albers SV
    Microbiologyopen; 2013 Dec; 2(6):928-37. PubMed ID: 24106028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo.
    Suzuki S; Kurosawa N
    Extremophiles; 2019 Sep; 23(5):613-624. PubMed ID: 31377865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation.
    Hansen JE; Dill AC; Grogan DW
    J Bacteriol; 2005 Jan; 187(2):805-9. PubMed ID: 15629955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Grogan DW; Carver GT; Drake JW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7928-33. PubMed ID: 11427720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange.
    Reilly MS; Grogan DW
    J Bacteriol; 2001 May; 183(9):2943-6. PubMed ID: 11292816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuity and limited linkage in the homologous recombination system of a hyperthermophilic archaeon.
    Grogan DW; Rockwood J
    J Bacteriol; 2010 Sep; 192(18):4660-8. PubMed ID: 20644140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.
    Rockwood J; Mao D; Grogan DW
    Microbiology (Reading); 2013 Sep; 159(Pt 9):1888-1899. PubMed ID: 23832004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of biochemical-genetic study.
    Grogan DW; Gunsalus RP
    J Bacteriol; 1993 Mar; 175(5):1500-7. PubMed ID: 8444810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress.
    Benninghoff JC; Kuschmierz L; Zhou X; Albersmeier A; Pham TK; Busche T; Wright PC; Kalinowski J; Makarova KS; Bräsen C; Flemming HC; Wingender J; Siebers B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741627
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Grogan DW; Hansen JE
    J Bacteriol; 2003 Feb; 185(4):1266-72. PubMed ID: 12562797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.